Convex geometry of max-stable distributions

It is shown that max-stable random vectors in [0, ∞ )d with unit Fréchet marginals are in one to one correspondence with convex sets K in [0, ∞ )d called max-zonoids. The max-zonoids can be characterised as sets obtained as limits of Minkowski sums of cross-polytopes or, alternatively, as the selection expectation of a random cross-polytope whose distribution is controlled by the spectral measure of the max-stable random vector. Furthermore, the cumulative distribution function Pξ ≤ x of a max-stable random vector ξ with unit Fréchet marginals is determined by the norm of the inverse to x, where all possible norms are given by the support functions of (normalised) max-zonoids. As an application, geometrical interpretations of a number of well-known concepts from the theory of multivariate extreme values and copulas are provided.

[1]  Laurens de Haan,et al.  Sea and Wind: Multivariate Extremes at Work , 1998 .

[2]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .

[3]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[4]  P. Hall,et al.  Prediction Regions for Bivariate Extreme Events , 2004 .

[5]  Strictly stable distributions on convex cones , 2005, math/0512196.

[6]  Rolf-Dieter Reiss,et al.  On Pickands coordinates in arbitrary dimensions , 2005 .

[7]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[8]  Werner Hürlimann,et al.  Hutchinson-Lai's Conjecture for Bivariate Extreme Value Copulas , 2002 .

[9]  C. Genest,et al.  A characterization of gumbel's family of extreme value distributions , 1989 .

[10]  Jonathan A. Tawn,et al.  Inequalities for the Extremal Coefficients of Multivariate Extreme Value Distributions , 2002 .

[11]  R. Nelsen An Introduction to Copulas , 1998 .

[12]  J. Hüsler Maxima of normal random vectors: between independence and complete dependence , 1989 .

[13]  W. J. Firey Some means of convex bodies , 1967 .

[14]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[15]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[16]  L. de Haan,et al.  Estimating the spectral measure of an extreme value distribution , 1997 .

[17]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[18]  G. Matheron Random Sets and Integral Geometry , 1976 .

[19]  Jonathan A. Tawn,et al.  A dependence measure for multivariate and spatial extreme values: Properties and inference , 2003 .

[20]  Richard A. Vitale,et al.  The Wills functional and Gaussian processes , 1996 .

[21]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[22]  Peter Hall,et al.  On the Estimation of a Convex Set With Corners , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[24]  A. Cuevas,et al.  On boundary estimation , 2004, Advances in Applied Probability.

[25]  S. G. Coles Review of laws of small numbers: extremes and rare events by Falk, Husler and Reiss. , 1996 .

[26]  I. Molchanov Theory of Random Sets , 2005 .

[27]  Marjorie G. Hahn,et al.  Max-infinitely divisible and max-stable sample continuous processes , 1990 .

[28]  W. J. Firey Polar Means of Convex Bodies and a Dual to the Brunn-Minkowski Theorem , 1961, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[29]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[30]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[31]  Rinya Takahashi Asymptotic independence and perfect dependence of vector components of multivariate extreme statistics , 1994 .

[32]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[33]  Roger B. Nelsen,et al.  Nonparametric measures of multivariate association , 1996 .

[34]  M. Falk A representation of bivariate extreme value distributions via norms on $$ \mathbb{R}^{2} $$ , 2006 .

[35]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[36]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[37]  Roger B. Nelsen,et al.  Copulas and Association , 1991 .

[38]  H. Joe Multivariate models and dependence concepts , 1998 .