Ionospheric Plasma Bubble Zonal Drift Derived From Total Electron Content Measurements

[1]  M. Abdu,et al.  Solar activity effects on equatorial plasma bubble zonal velocity and its latitude gradient as measured by airglow scanning photometers , 1991 .

[2]  G. Haerendel,et al.  Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow , 1992 .

[3]  C. J. Zamlutti,et al.  Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of airglow observations , 2002 .

[4]  B. Fejer,et al.  Climatology of F region zonal plasma drifts over Jicamarca , 2005 .

[5]  Jiyun Lee,et al.  Long-term ionospheric anomaly monitoring for ground based augmentation systems , 2012 .

[6]  C. J. Zamlutti,et al.  Midnight reversal of ionospheric plasma bubble eastward velocity to westward velocity during geomagnetically quiettime: Climatology and its model validation , 2011 .

[7]  M. A. Abdu,et al.  Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F , 2001 .

[8]  Per Enge,et al.  Observations of low‐elevation ionospheric anomalies for ground‐based augmentation of GNSS , 2011 .

[9]  Bruno J. Affonso,et al.  Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region , 2017 .

[10]  R. Pfaff,et al.  The Brazil/Guará Equatorial Spread F Campaign: Results of the large scale measurements , 1997 .

[11]  L. C. Gentile,et al.  Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT‐1 , 2004 .

[12]  C. J. Zamlutti,et al.  Association between plasma bubble irregularities and airglow disturbances over Brazilian low latitudes , 1980 .

[13]  Jules Aarons,et al.  The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence , 1993 .

[14]  Ronald F. Woodman,et al.  Average vertical and zonal F region plasma drifts over Jicamarca , 1991 .

[15]  I. Batista,et al.  Rocket observation of equatorial plasma bubbles over Natal, Brazil, using a high-frequency capacitance probe , 1991 .

[16]  M. Kelley,et al.  Nonlinear evolution of equatorial spread F 4. Gravity waves, velocity shear, and day-to-day variability , 1996 .

[17]  Thomas Dautermann,et al.  Propagation of Plasma Bubbles Observed in Brazil from GPS and Airglow Data , 2011 .

[18]  H. Takahashi,et al.  Plasma bubble zonal velocity variations with solar activity in the Brazilian region , 2004 .

[19]  E. Kherani,et al.  An alternative possibility to equatorial plasma bubble forecasting through mathematical modeling and Digisonde data , 2017 .

[20]  J. D. Huba,et al.  Global modeling of equatorial plasma bubbles , 2010 .

[21]  Jiyun Lee,et al.  Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS , 2013 .

[22]  J. Bittencourt,et al.  Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations , 1983 .

[23]  J. Souza,et al.  Equatorial spread F statistics and empirical representation for IRI: A regional model for the Brazilian longitude sector , 2003 .

[24]  Paul M. Kintner,et al.  Mapping and Survey of Plasma Bubbles over Brazilian Territory , 2007 .

[25]  Biagio Forte,et al.  GPS availability and positioning issues when the signal paths are aligned with ionospheric plasma bubbles , 2018, GPS Solutions.

[26]  Per Enge,et al.  Ionospheric Threat Parameterization for Local Area Global-Positioning-System-Based Aircraft Landing Systems , 2010 .

[27]  Per Enge,et al.  Impact and mitigation of ionospheric anomalies on ground‐based augmentation of GNSS , 2009 .

[28]  L. C. Gentile,et al.  Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology , 2002 .

[29]  K. Matsunaga,et al.  Air Navigation with Global Navigation Satellite Systems and the Ionospheric Effects , 2011 .