Potential games in volatile environments

This paper studies the co-evolution of networks and play in the context of finite population potential games. Action revision, link creation and link destruction are combined in a continuous-time Markov process. I derive the unique invariant distribution of this process in closed form, as well as the marginal distribution over action profiles and the conditional distribution over networks. It is shown that the equilibrium interaction topology is an inhomogeneous random graph. Furthermore, a characterization of the set of stochastically stable states is provided, generalizing existing results to models with endogenous interaction structures.

[1]  H. Young,et al.  Individual Strategy and Social Structure: An Evolutionary Theory of Institutions , 1999 .

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Matteo Marsili,et al.  Networks Emerging in a Volatile World , 2008 .

[4]  H. Peyton Young,et al.  Stochastic Evolutionary Game Dynamics , 1990 .

[5]  Matteo Marsili,et al.  The rise and fall of a networked society: a formal model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Matteo Marsili,et al.  Emergence and resilience of social networks : a general theoretical framework. Commentary , 2005 .

[7]  B. Bollobás The evolution of random graphs , 1984 .

[8]  Lawrence E. Blume,et al.  How noise matters , 2003, Games Econ. Behav..

[9]  Takashi Ui,et al.  A Shapley Value Representation of Potential Games , 2000, Games Econ. Behav..

[10]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Matteo Marsili,et al.  Phenomenological models of socioeconomic network dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  G. Grimmett,et al.  Probability and random processes , 2002 .

[13]  Mathias Staudigl,et al.  Co-evolutionary dynamics and Bayesian interaction games , 2013, Int. J. Game Theory.

[14]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[15]  L. Shapley,et al.  Potential Games , 1994 .

[16]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[17]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[18]  H. Peyton Young,et al.  Individual Strategy and Social Structure , 2020 .

[19]  Stephen Morris,et al.  Generalized Potentials and Robust Sets of Equilibria , 2003, J. Econ. Theory.

[20]  D. Stroock An Introduction to Markov Processes , 2004 .

[21]  L. Blume The Statistical Mechanics of Strategic Interaction , 1993 .

[22]  Sanjeev Goyal,et al.  Network Formation and Social Coordination , 2003, Games Econ. Behav..

[23]  Daniel A. Hojman,et al.  Endogenous networks, social games, and evolution , 2006, Games Econ. Behav..

[24]  William H. Sandholm,et al.  Pigouvian pricing and stochastic evolutionary implementation , 2007, J. Econ. Theory.

[25]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[26]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[27]  Nick Netzer,et al.  The logit-response dynamics , 2010, Games Econ. Behav..

[28]  L. Blume,et al.  POPULATION GAMES , 1995 .

[29]  Matthew O. Jackson,et al.  On the formation of interaction networks in social coordination games , 2002, Games Econ. Behav..

[30]  André de Palma,et al.  Discrete Choice Theory of Product Differentiation , 1995 .

[31]  O. Catoni Simulated annealing algorithms and Markov chains with rare transitions , 1999 .

[32]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[33]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[34]  H. Young,et al.  The Evolution of Conventions , 1993 .

[35]  Josef Hofbauer,et al.  Evolution in games with randomly disturbed payoffs , 2007, J. Econ. Theory.

[36]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[37]  B. Söderberg General formalism for inhomogeneous random graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  David P. Myatt,et al.  A multinomial probit model of stochastic evolution , 2003 .

[39]  Takashi Ui,et al.  Robust Equilibria of Potential Games , 2001 .

[40]  Steven N. Durlauf,et al.  The Economy As an Evolving Complex System III: Current Perspectives and Future Directions , 2005 .

[41]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[42]  S. Morris,et al.  The Robustness of Equilibria to Incomplete Information , 1997 .

[43]  Eric van Damme,et al.  Evolution in Games with Endogenous Mistake Probabilities , 2002, J. Econ. Theory.

[44]  Mathias Staudigl,et al.  On a General class of stochastic co-evolutionary dynamics , 2010 .

[45]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .