Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability

Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 × 100 km 2 . In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability.

[1]  Rosemary Morrow,et al.  The French contribution to the voluntary observing ships network of sea surface salinity , 2015 .

[2]  Detlef Stammer,et al.  Spatial and temporal scales of sea surface salinity variability in the Atlantic Ocean , 2015 .

[3]  P. Minnett,et al.  Observations indicative of rain‐induced double diffusion in the ocean surface boundary layer , 2015 .

[4]  N. Reul,et al.  Comparison of spaceborne measurements of sea surface salinity and colored detrital matter in the Amazon plume , 2015 .

[5]  S. Riser,et al.  Variability in Near-Surface Salinity from Hours to Decades in the Eastern North Atlantic: The SPURS Region , 2015 .

[6]  Y. Chao,et al.  Sea Surface Salinity Observations with Lagrangian Drifters in the Tropical North Atlantic During SPURS: Circulation, Fluxes, and Comparisons with Remotely Sensed Salinity from Aquarius , 2015 .

[7]  Tong Lee,et al.  Intraseasonal sea surface salinity variability in the equatorial Indo‐Pacific Ocean induced by Madden‐Julian oscillations , 2015 .

[8]  J. Font,et al.  Surface Salinity in the North Atlantic Subtropical Gyre During the STRASSE/SPURS Summer 2012 Cruise , 2015 .

[9]  Craig M. Lee,et al.  Salinity and temperature balances at the SPURS central mooring during fall and winter , 2015 .

[10]  Frank O. Bryan,et al.  SPURS: Salinity Processes in the Upper-Ocean Regional Study: THE NORTH ATLANTIC EXPERIMENT , 2015 .

[11]  S. Matt,et al.  Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer , 2015 .

[12]  Jacqueline Boutin,et al.  SMOS salinity in the subtropical North Atlantic salinity maximum: 2. Two‐dimensional horizontal thermohaline variability , 2015 .

[13]  Tong Lee,et al.  Modeling skin‐layer salinity with an extended surface‐salinity layer , 2015 .

[14]  G. Schumann,et al.  Sea surface salinity variability in response to the Congo river discharge , 2014 .

[15]  B. Ward,et al.  Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification , 2014 .

[16]  P. Flatau,et al.  The Surface Diurnal Warm Layer in the Indian Ocean during CINDY/DYNAMO , 2014 .

[17]  Tong Lee,et al.  The influence of salinity on tropical Atlantic instability waves , 2014 .

[18]  Bertrand Chapron,et al.  Multisensor observations of the Amazon‐Orinoco river plume interactions with hurricanes , 2014 .

[19]  Jacqueline Boutin,et al.  SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity , 2014 .

[20]  S. Riser,et al.  Near‐surface variability of temperature and salinity in the near‐tropical ocean: Observations from profiling floats , 2014 .

[21]  W. Linwood Jones,et al.  Investigation of rain effects on Aquarius Sea Surface Salinity measurements , 2014 .

[22]  Y. Chao,et al.  The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations , 2014, Journal of geophysical research. Oceans.

[23]  B. Ward,et al.  The Air-Sea Interaction Profiler (ASIP): An Autonomous Upwardly Rising Profiler for Microstructure Measurements in the Upper Ocean , 2014 .

[24]  Y. Song,et al.  Seasonal salinity stratifications in the near‐surface layer from Aquarius, Argo, and an ocean model: Focusing on the tropical Atlantic/Indian Oceans , 2014 .

[25]  J. Sprintall,et al.  The diurnal salinity cycle in the tropics , 2014 .

[26]  Andrew T. Jessup,et al.  Observations of rain‐induced near‐surface salinity anomalies , 2014 .

[27]  Jacqueline Boutin,et al.  Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations , 2014 .

[28]  S. Riser,et al.  Validation of Aquarius sea surface salinity with Argo: Analysis of error due to depth of measurement and vertical salinity stratification , 2014 .

[29]  Julius J. M. Busecke,et al.  Subtropical surface layer salinity budget and the role of mesoscale turbulence , 2014 .

[30]  V. Menezes,et al.  Aquarius sea surface salinity in the South Indian Ocean: Revealing annual‐period planetary waves , 2014 .

[31]  Jacqueline Boutin,et al.  Analyzing the 2010–2011 La Niña signature in the tropical Pacific sea surface salinity using in situ data, SMOS observations, and a numerical simulation , 2014 .

[32]  A. Gordon,et al.  Ocean eddy freshwater flux convergence into the North Atlantic subtropics , 2014 .

[33]  David M. Fratantoni,et al.  AUV Observations of the Diurnal Surface Layer in the North Atlantic Salinity Maximum , 2014 .

[34]  Emmanuel P. Dinnat,et al.  Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 1: Product description , 2014 .

[35]  Emmanuel P. Dinnat,et al.  Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis , 2014 .

[36]  W. Asher,et al.  Stable near‐surface ocean salinity stratifications due to evaporation observed during STRASSE , 2014 .

[37]  Bertrand Chapron,et al.  Sea surface salinity structure of the meandering Gulf Stream revealed by SMOS sensor , 2014 .

[38]  Yann Kerr,et al.  Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle , 2014, Surveys in Geophysics.

[39]  Christophe Maes,et al.  Seasonal variations of the upper ocean salinity stratification in the Tropics , 2014 .

[40]  B. Ward,et al.  Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer , 2014 .

[41]  P. Heimbach,et al.  North Atlantic warming and the retreat of Greenland's outlet glaciers , 2013, Nature.

[42]  Marc Lucas,et al.  Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level , 2013 .

[43]  Christophe Maes,et al.  Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo , 2013 .

[44]  R. Ponte,et al.  Small-Scale Variability in Sea Surface Salinity and Implications for Satellite-Derived Measurements , 2013 .

[45]  Vardis Tsontos,et al.  Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico , 2013 .

[46]  V. Garçon,et al.  Small-scale features of temperature and salinity surface fields in the Coral Sea , 2013 .

[47]  Wenqing Tang,et al.  The rain effect on Aquarius' L-band sea surface brightness temperature and radar backscatter , 2013 .

[48]  J. Boutin,et al.  Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades , 2013 .

[49]  J. Boutin,et al.  Surpact: A SMOS surface wave rider for air-sea interaction , 2013 .

[50]  M. Mcphaden,et al.  Characteristics of the seasonal cycle of surface layer salinity in the global ocean , 2012 .

[51]  Bertrand Chapron,et al.  Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations , 2012 .

[52]  Jacqueline Boutin,et al.  Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain , 2012 .

[53]  Nadya T. Vinogradova,et al.  Assessing Temporal Aliasing in Satellite-Based Surface Salinity Measurements , 2012 .

[54]  Gary S. E. Lagerloef,et al.  Satellite mission monitors ocean surface salinity , 2012 .

[55]  Yann Kerr,et al.  ESA's Soil Moisture and Ocean Salinity Mission: Mission Performance and Operations , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Xin Zhang,et al.  Ocean haline skin layer and turbulent surface convections , 2012 .

[57]  N. Reul,et al.  Seasonal dynamics of sea surface salinity off Panama: The far Eastern Pacific Fresh Pool , 2012 .

[58]  J. Boutin,et al.  Rain-induced variability of near sea-surface T and S from drifter data , 2012 .

[59]  Peter W. Gaiser,et al.  Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction , 2011 .

[60]  G. Reverdin,et al.  Summertime modification of surface fronts in the North Atlantic subpolar gyre , 2011 .

[61]  B. Ward,et al.  Surface layer mixing during the SAGE ocean fertilization experiment , 2011 .

[62]  Alexander Soloviev,et al.  The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications , 2010 .

[63]  Antonio J. Busalacchi,et al.  A TOGA Retrospective , 2010 .

[64]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[65]  J. Bamber,et al.  Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model , 2009 .

[66]  R. Lukas,et al.  The Near-Surface Layer of the Ocean , 2009 .

[67]  E. Fahrbach,et al.  Ice‐ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review , 2009 .

[68]  Bertrand Chapron,et al.  Demonstration of ocean surface salinity microwave measurements from space using AMSR‐E data over the Amazon plume , 2009 .

[69]  Fabrice Hernandez,et al.  THE PIRATA PROGRAM History, Accomplishments, and Future Directions * , 2008 .

[70]  Juliette Mignot,et al.  Control of salinity on the mixed layer depth in the world ocean : 2. Tropical areas - art. no. C10010 , 2007 .

[71]  Jacqueline Boutin,et al.  ARGO upper salinity measurements: perspectives for L-band radiometers calibration and retrieved sea surface salinity validation , 2006, IEEE Geoscience and Remote Sensing Letters.

[72]  Michael J. McPhaden,et al.  Time and space scales for sea surface salinity in the tropical oceans , 2005 .

[73]  Frank J. Wentz,et al.  The Effect of Clouds and Rain on the Aquarius Salinity Retrieval , 2005 .

[74]  R. Lukas,et al.  Sharp frontal interfaces in the near-surface layer of the tropical ocean , 2002 .

[75]  E. F. Bradley,et al.  The JASMINE Pilot Study. , 2002 .

[76]  David M. Fratantoni,et al.  North Brazil Current Ring Generation and Evolution Observed with SeaWiFS , 2002 .

[77]  W. Asher,et al.  On mechanisms of rain-induced air-water gas exchange , 2000 .

[78]  M. Mcphaden,et al.  Diurnal cycle of rainfall and surface salinity in the Western Pacific Warm Pool , 1999 .

[79]  B. Bourlès,et al.  The barrier layer in the western tropical Atlantic Ocean , 1999 .

[80]  C. Paulson,et al.  The Effect of Rainfall on the Surface Layer during a Westerly Wind Burst in the Western Equatorial Pacific , 1999 .

[81]  Antonio J. Busalacchi,et al.  The Tropical Ocean‐Global Atmosphere observing system: A decade of progress , 1998 .

[82]  R. Lukas,et al.  Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool , 1997 .

[83]  W. Emery,et al.  COOL AND FRESHWATER SKIN OF THE OCEAN DURING RAINFALL , 1997 .

[84]  Richard H. Johnson,et al.  Heating, Moistening, and Rainfall over the Western Pacific Warm Pool during TOGA COARE. , 1996 .

[85]  R. Lukas,et al.  Observation of Spatial Variability of Diurnal Thermocline and Rain-Formed Halocline in the Western Pacific Warm Pool , 1996 .

[86]  F. Muller‐Karger,et al.  On the offshore dispersal of the Amazon's Plume in the North Atlantic: Comments on the paper by A. Longhurst, “Seasonal cooling and blooming in tropical oceans” , 1995 .

[87]  R. Limeburner,et al.  The Amazon River Plume during AMASSEDS: Spatial characteristics and salinity variability , 1995 .

[88]  A. Longhurst Seasonal cooling and blooming in tropical oceans , 1993 .

[89]  Janet Sprintall,et al.  Evidence of the barrier layer in the surface layer of the tropics , 1992 .

[90]  Calvin T. Swift,et al.  Passive microwave remote sensing of the ocean—A review , 1980 .

[91]  K. Katsaros,et al.  Influence of Rainfall on Temperature and Salinity of the Ocean Surface , 1969 .

[92]  P. M. Saunders,et al.  The Temperature at the Ocean-Air Interface , 1967 .

[93]  Johnny A. Johannessen,et al.  Monitoring the spreading of the Amazon freshwater plume by MODIS, SMOS, Aquarius, and TOPAZ , 2015 .

[94]  Jacqueline Boutin,et al.  Vertical Variability of Near-Surface Salinity in the Tropics: Consequences for L-Band Radiometer Calibration and Validation , 2010 .

[95]  Lisan Yu On Sea Surface Salinity Skin Effect Induced by Evaporation and Implications for Remote Sensing of Ocean Salinity , 2010 .

[96]  Michael,et al.  THE PIRATA PROGRAM , 2008 .