Error control based model reduction for multiscale problems

In this contribution we review a posteriori based discretization methods for variational multiscale problems  and suggest a suitable conceptual approach for an ecient numerical treatment of parametrized variational  multiscale problems where the parameters are either chosen from a low dimensional parameter space or  consists of parameter functions from some compact low dimensional manifold that is embedded in some  high dimensional or even innite dimensional function space. The approach is based on combinations of ideas  from established numerical multiscale methods and ecient model reduction approaches such as the reduced  basis method.

[1]  Axel Målqvist,et al.  Multiscale Methods for Elliptic Problems , 2011, Multiscale Model. Simul..

[2]  B. Haasdonk,et al.  A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems , 2011 .

[3]  Raytcho D. Lazarov,et al.  Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman's Equations , 2009, LSSC.

[4]  Bernard Haasdonk,et al.  Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..

[5]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[6]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[7]  P. Henning,et al.  posteriori error estimation for a heterogeneous multiscale method for monotone operators and beyond a periodic setting , 2011 .

[8]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[9]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[10]  Assyr Abdulle,et al.  The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .

[11]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[12]  Viet Ha Hoang Sparse Finite Element Method for Periodic Multiscale Nonlinear Monotone Problems , 2008, Multiscale Model. Simul..

[13]  Patrick Jenny,et al.  Adaptive iterative multiscale finite volume method , 2011, J. Comput. Phys..

[14]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[15]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[16]  Jan M. Nordbotten,et al.  Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media , 2009, Multiscale Model. Simul..

[17]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[18]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[19]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[20]  Stein Krogstad,et al.  Multiscale Methods for Subsurface Flow , 2009 .

[21]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[22]  Bernard Haasdonk,et al.  THE LOCALIZED REDUCED BASIS MULTISCALE METHOD , 2015 .

[23]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[24]  Patrick Henning,et al.  A NEWTON-SCHEME FRAMEWORK FOR MULTISCALE METHODS FOR NONLINEAR ELLIPTIC HOMOGENIZATION PROBLEMS , 2015 .

[25]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[26]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[27]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[28]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[29]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[30]  J. Nordbotten,et al.  On the relationship between the multiscale finite-volume method and domain decomposition preconditioners , 2008 .

[31]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[32]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[33]  Antoine Gloria,et al.  An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..

[34]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .