Error control based model reduction for multiscale problems
暂无分享,去创建一个
[1] Axel Målqvist,et al. Multiscale Methods for Elliptic Problems , 2011, Multiscale Model. Simul..
[2] B. Haasdonk,et al. A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems , 2011 .
[3] Raytcho D. Lazarov,et al. Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman's Equations , 2009, LSSC.
[4] Bernard Haasdonk,et al. Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..
[5] Assyr Abdulle,et al. Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .
[6] B. Haasdonk,et al. REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .
[7] P. Henning,et al. posteriori error estimation for a heterogeneous multiscale method for monotone operators and beyond a periodic setting , 2011 .
[8] Mario Ohlberger,et al. A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..
[9] Multiscale Finite Element Methods for Elliptic Equations , 2010 .
[10] Assyr Abdulle,et al. The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .
[11] I. Babuska,et al. The Partition of Unity Method , 1997 .
[12] Viet Ha Hoang. Sparse Finite Element Method for Periodic Multiscale Nonlinear Monotone Problems , 2008, Multiscale Model. Simul..
[13] Patrick Jenny,et al. Adaptive iterative multiscale finite volume method , 2011, J. Comput. Phys..
[14] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[15] E. Rank,et al. A multiscale finite-element method , 1997 .
[16] Jan M. Nordbotten,et al. Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media , 2009, Multiscale Model. Simul..
[17] M. Larson,et al. Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .
[18] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[19] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[20] Stein Krogstad,et al. Multiscale Methods for Subsurface Flow , 2009 .
[21] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[22] Bernard Haasdonk,et al. THE LOCALIZED REDUCED BASIS MULTISCALE METHOD , 2015 .
[23] T. Hou,et al. Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .
[24] Patrick Henning,et al. A NEWTON-SCHEME FRAMEWORK FOR MULTISCALE METHODS FOR NONLINEAR ELLIPTIC HOMOGENIZATION PROBLEMS , 2015 .
[25] Yalchin Efendiev,et al. Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..
[26] I. Babuska,et al. Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .
[27] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[28] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[29] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[30] J. Nordbotten,et al. On the relationship between the multiscale finite-volume method and domain decomposition preconditioners , 2008 .
[31] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[32] Yvon Maday,et al. The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..
[33] Antoine Gloria,et al. An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..
[34] J. Hesthaven,et al. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .