Semi-quantum identification

AbstractTo ensure communication security, it is necessary to verify the identities of the communicators. Two semi-quantum identification protocols with single photons involving two parties, i.e., quantum Alice and classical Bob, are presented. In the first semi-quantum identification protocol, classical Bob can authenticate quantum Alice’s identity without the help of an authenticated classical channel. As for the second one, quantum Alice can verify the identity of classical Bob without the classical measurement ability. Semi-quantum identification is significant to ensure the security of semi-quantum key distribution, semi-quantum secret sharing and so on. The proposed two identification protocols against common attacks can be employed in several existing semi-quantum key distribution protocols based on single photons to resist the man-in-the-middle attack.

[1]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[2]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, STOC '00.

[3]  Guihua Zeng,et al.  Identity verification in quantum key distribution , 2000 .

[4]  Tan Yong-Gang,et al.  Quantum key distribution series network protocol with M-classical Bobs , 2009 .

[5]  Jun Zhu,et al.  QUANTUM IDENTITY AUTHENTICATION USING GAUSSIAN-MODULATED SQUEEZED STATES , 2011 .

[6]  Walter O. Krawec Security proof of a semi-quantum key distribution protocol , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[7]  Quan Zhang,et al.  Semiquantum Key Distribution Using Entangled States , 2011, 1104.1267.

[8]  Walter O. Krawec Security of a semi-quantum protocol where reflections contribute to the secret key , 2015, Quantum Inf. Process..

[9]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[10]  Guihua Zeng,et al.  Ja n 20 07 Improving security of quantum identity authentication based on ping-pong technique for photons , 1978 .

[11]  Wang Xiangbin Erratum: Decoy-state protocol for quantum cryptography with four different intensities of coherent light [Phys. Rev. A 72, 012322 (2005)] , 2005 .

[12]  Xiangfu Zou,et al.  Reply to ``Comment on `Semiquantum-key distribution using less than four quantum states' '' , 2010, 1010.4233.

[13]  Jun Zhou,et al.  Quantum identity authentication based on ping-pong technique without entanglements , 2014, Quantum Information Processing.

[14]  Tal Mor,et al.  Quantum Key Distribution with Classical Bob , 2007, 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07).

[15]  Tal Mor,et al.  Comment on "Semiquantum-key distribution using less than four quantum states" , 2010, 1010.2221.

[16]  Takashi Mihara,et al.  Quantum identification schemes with entanglements , 2002 .

[17]  Heinrich Saller Quantum Relativity , 2017 .

[18]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[19]  Zeng Gui Quantum Identity Authentication Without Trusted-Party , 2004 .

[20]  Xiang-Bin Wang A decoy-state protocol for quantum cryptography with 4 intensities of coherent states , 2008 .

[21]  Yan Chang,et al.  Quantum secure direct communication and authentication protocol with single photons , 2013 .

[22]  Hua Lu,et al.  QUANTUM KEY DISTRIBUTION WITH CLASSICAL ALICE , 2008 .

[23]  Tzonelih Hwang,et al.  Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement , 2018 .

[24]  Guihua Zeng,et al.  Cross-center quantum identification scheme based on teleportation and entanglement swapping , 2005 .

[25]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[26]  Qing-yu Cai,et al.  Comment on "Quantum key distribution with classical Bob". , 2009, Physical review letters.

[27]  Walter O. Krawec Mediated semiquantum key distribution , 2014, 1411.6024.

[28]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[29]  Tal Mor,et al.  Boyer, Kenigsberg, and Mor Reply: , 2009 .

[30]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[31]  Tzonelih Hwang,et al.  Authenticated semi-quantum key distributions without classical channel , 2016, Quantum Inf. Process..

[32]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[33]  Jinye Peng,et al.  Fault-tolerant Semiquantum key Distribution Over a Collective-dephasing Noise Channel , 2017 .

[34]  Walter O. Krawec Restricted attacks on semi-quantum key distribution protocols , 2014, Quantum Inf. Process..

[35]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[36]  Chun-Wei Yang,et al.  Authenticated semi-quantum key distribution protocol using Bell states , 2014, Quantum Inf. Process..

[37]  Shengyu Zhang,et al.  Semiquantum key distribution without invoking the classical party’s measurement capability , 2015, Quantum Information Processing.

[38]  Shengyu Zhang,et al.  Measurement-device-independent semiquantum key distribution , 2018 .

[39]  Daesung Kwon,et al.  Quantum identity authentication with single photon , 2017, Quantum Information Processing.

[40]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[41]  Daowen Qiu,et al.  Semiquantum-key distribution using less than four quantum states , 2009 .

[42]  Yu-Guang Yang,et al.  Quantum deniable authentication protocol , 2014, Quantum Inf. Process..

[43]  Tal Mor,et al.  A New and Feasible Protocol for Semi-quantum Key Distribution , 2017, ArXiv.

[44]  Yassine Hassouni,et al.  Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states , 2017, Quantum Inf. Process..

[45]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[46]  Ran Gelles,et al.  Semi-Quantum Key Distribution , 2008, ArXiv.