Configuration spaces of equal spheres touching a given sphere: The twelve spheres problem

The problem of 12 spheres is to understand, as a function of r ∈ (0, rmax(12)], the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be moved around on the unit sphere, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also addresses results on configuration spaces of N spheres of radius r touching a central unit sphere, for 3 ≤ N ≤ 14. The problem of determining the maximal radius rmax(N) is equivalent to the Tammes problem, to which László Fejes Tóth made significant contributions.

[1]  S. Glotzer,et al.  Self-assembled clusters of spheres related to spherical codes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[3]  P. Anderson,et al.  Through the Glass Lightly , 1995, Science.

[4]  T. Hales The Strong Dodecahedral Conjecture and Fejes Tóth’s Conjecture on Sphere Packings with Kissing Number Twelve , 2011, 1110.0402.

[5]  B. Totaro Configuration spaces of algebraic varieties , 1996 .

[6]  L. Tóth On the Densest Packing of Spherical Caps , 1949 .

[7]  Jason H. Cantarella,et al.  Criticality for the Gehring link problem , 2004, math/0402212.

[8]  Hiroshi Maehara The problem of thirteen spheres - a proof for undergraduates , 2007, Eur. J. Comb..

[9]  Kurt M. Anstreicher The Thirteen Spheres: A New Proof , 2004, Discret. Comput. Geom..

[10]  W. D. Wightman,et al.  From the Closed World to the Infinite Universe. , 1959 .

[11]  D. Dennison THE CRYSTAL STRUCTURE OF ICE. , 1920, Science.

[12]  Andrea J. Liu,et al.  Jamming at zero temperature and zero applied stress: the epitome of disorder. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Frederick R. Cohen,et al.  INTRODUCTION TO CONFIGURATION SPACES AND THEIR APPLICATIONS , 2009 .

[14]  L. Rosenfeld,et al.  The Correspondence of Isaac Newton , 1961, Nature.

[15]  H. Löwen Fun with Hard Spheres , 2000 .

[16]  W. Barlow Probable Nature of the Internal Symmetry of Crystals , 1883, Nature.

[17]  Alexey S. Tarasov,et al.  Enumeration of Irreducible Contact Graphs on the Sphere , 2013, 1312.5450.

[18]  Oleg R. Musin,et al.  The Strong Thirteen Spheres Problem , 2010, Discret. Comput. Geom..

[19]  Bemerkung der Redaktion , 1931 .

[20]  L. Marton,et al.  Atomism in England from Hariot to Newton , 1967 .

[21]  Martin Aigner,et al.  The problem of the thirteen spheres , 1998 .

[22]  E. Fadell Homotopy groups of configuration spaces and the string problem of Dirac , 1962 .

[23]  Robert Connelly Rigidity of packings , 2008, Eur. J. Comb..

[24]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[25]  O. R. Musin,et al.  The Kissing Problem in Three Dimensions , 2006 .

[26]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[27]  Robert Ghrist,et al.  Finding Topology in a Factory: Configuration Spaces , 2002, Am. Math. Mon..

[28]  Sharon C Glotzer,et al.  Digital colloids: reconfigurable clusters as high information density elements , 2014 .

[29]  R. Robinson Finite sets of points on a sphere with each nearest to five others , 1969 .

[30]  T. Hales The status of the kepler conjecture , 1994 .

[31]  Ludwig Danzer,et al.  Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..

[32]  Vladimir I. Arnold,et al.  The cohomology ring of the colored braid group , 1969 .

[33]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[34]  Michael Farber,et al.  Invitation to Topological Robotics , 2008, Zurich Lectures in Advanced Mathematics.

[35]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .

[36]  H. Whitney Tangents to an Analytic Variety , 1965 .

[37]  H. Coxeter The problem of packing a number of equal nonoverlapping circles on a sphere , 1962 .

[38]  Caspar Schwabe Eureka and Serendipity: The Rudolf von Laban Icosahedron and Buckminster Fuller's Jitterbug , 2010 .

[39]  H. F. Verheyen THE COMPLETE SET OF JITTERBUG TRANSFORMERS AND THE ANALYSIS OF THEIR MOTION , 1989 .

[40]  C. Angell Insights into Phases of Liquid Water from Study of Its Unusual Glass-Forming Properties , 2008, Science.

[41]  Miranda C. Holmes-Cerfon,et al.  Enumerating Rigid Sphere Packings , 2014, SIAM Rev..

[42]  F. Stillinger,et al.  Jammed hard-particle packings: From Kepler to Bernal and beyond , 2010, 1008.2982.

[43]  K. Böröczky,et al.  Arrangements of 14, 15, 16 and 17 points on a sphere , 2003 .

[44]  Oleg R. Musin,et al.  The Tammes Problem for N = 14 , 2014, Exp. Math..

[45]  Matthew Kahle,et al.  Computational topology for configuration spaces of hard disks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Andrea J. Liu,et al.  The Jamming Transition and the Marginally Jammed Solid , 2010 .

[47]  L. Fejes Über die dichteste Kugellagerung , 1942 .

[48]  L. Lovász,et al.  Remarks on a theorem of Redei , 1981 .

[49]  R. Robinson Arrangement of 24 points on a sphere , 1961 .

[50]  Ronald L. Graham,et al.  Dense Packings of 3k(k+1)+1 Equal Disks in a Circle for k=1, 2, 3, 4 and 5 , 1995, COCOON.

[51]  E. Feichtner The integral cohomology algebras of ordered configuration spaces of spheres , 2000, Documenta Mathematica.

[52]  L. Tóth Kugelunterdeckungen und Kugelüberdeckungen in Räumen konstanter Krümmung , 1959 .

[53]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[54]  V. Gershkovich,et al.  MORSE THEORY FOR MIN-TYPE FUNCTIONS* , 1997 .

[55]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .

[56]  F. Frank Supercooling of liquids , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  K. Böröczky,et al.  Arrangements of 13 points on a sphere , 2003 .

[58]  T. Hales,et al.  The dodecahedral conjecture , 2009 .

[59]  Yuliy Baryshnikov,et al.  Min-type Morse theory for configuration spaces of hard spheres , 2011, ArXiv.

[60]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .

[61]  Richard P. Stanley,et al.  Deformations of Coxeter Hyperplane Arrangements , 2000, J. Comb. Theory, Ser. A.