ARK-1 inhibits EGFR signaling in C. elegans.

A screen for synthetic enhancers of sli-1 identified ark-1 (forAck-related tyrosine kinase), a novel inhibitor of let-23 EGFR signaling in C. elegans. An ark-1 mutation synergizes with mutations in other negative regulators of let-23, resulting in increased RAS signaling. Genetic analysis suggests that ARK-1 acts upstream of RAS and is dependent upon SEM-5. ARK-1 inhibits LET-23-mediated ovulation, a RAS-independent function. ARK-1 physically interacts with SEM-5 in the yeast two-hybrid assay. We find that sem-5 also has a negative function in let-23-mediated ovulation and suggest that this negative function is mediated by the recruitment of inhibitors such as ARK-1.

[1]  Min Han,et al.  The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction , 1995, Cell.

[2]  S. K. Kim,et al.  Polarized signaling: basolateral receptor localization in epithelial cells by PDZ-containing proteins. , 1997, Current opinion in cell biology.

[3]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[4]  Tony Pawson,et al.  Mammalian Grb2 Regulates Multiple Steps in Embryonic Development and Malignant Transformation , 1998, Cell.

[5]  Paul W. Sternberg,et al.  Pattern formation during vulval development in C. elegans , 1986, Cell.

[6]  H. Horvitz,et al.  Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction , 1990, Nature.

[7]  P. Sternberg,et al.  Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. , 1991, Genetics.

[8]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[9]  P. Sternberg,et al.  The lin-3/let-23 pathway mediates inductive signalling during male spicule development in Caenorhabditis elegans. , 1994, Development.

[10]  Matthew Freeman,et al.  Sprouty, an Intracellular Inhibitor of Ras Signaling , 1999, Cell.

[11]  P. Sternberg,et al.  Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. , 1997, Developmental biology.

[12]  A. Ullrich,et al.  The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling , 1992, Cell.

[13]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[14]  P. Sternberg,et al.  Molecular genetics of proto-oncogenes and candidate tumor suppressors in Caenorhabditis elegans. , 1994, Cold Spring Harbor symposia on quantitative biology.

[15]  R. Weinberg,et al.  Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation , 1993, Nature.

[16]  D. Baillie,et al.  Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. , 1991, Genetics.

[17]  E. Hafen,et al.  Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila. , 1995, The EMBO journal.

[18]  J Kimble,et al.  Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. , 1981, Developmental biology.

[19]  P. Sternberg,et al.  Inositol Trisphosphate Mediates a RAS-Independent Response to LET-23 Receptor Tyrosine Kinase Activation in C. elegans , 1998, Cell.

[20]  T. Pawson,et al.  SH2 domains recognize specific phosphopeptide sequences , 1993, Cell.

[21]  P. Sternberg,et al.  sli-1, a negative regulator of let-23-mediated signaling in C. elegans. , 1995, Genetics.

[22]  P. Sternberg,et al.  unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. , 1994, Genes & Development.

[23]  A. Kazlauskas Receptor tyrosine kinases and their targets. , 1994, Current opinion in genetics & development.

[24]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[25]  M. Han,et al.  Ras is required for a limited number of cell fates and not for general proliferation in Caenorhabditis elegans , 1997, Molecular and cellular biology.

[26]  R. Cerione,et al.  Cloning and Characterization of a Novel Cdc42-associated Tyrosine Kinase, ACK-2, from Bovine Brain* , 1997, The Journal of Biological Chemistry.

[27]  E. Hafen,et al.  A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos , 1993, Cell.

[28]  M. Ito,et al.  Alternative splicing generates two distinct transcripts for the Drosophila melanogaster fibroblast growth factor receptor homolog. , 1994, Gene.

[29]  P. Sternberg,et al.  Caenorhabditis elegans SOS‐1 is necessary for multiple RAS‐mediated developmental signals , 2000, The EMBO journal.

[30]  G. Rubin,et al.  An SH3-SH2-SH3 protein is required for p21 Ras1 activation and binds to sevenless and Sos proteins in vitro , 1993, Cell.

[31]  P. Sternberg,et al.  Mutations in the Caenorhabditis elegans let‐23 EGFR‐like gene define elements important for cell‐type specificity and function. , 1994, The EMBO journal.

[32]  G. Struhl,et al.  Different levels of Ras activity can specify distinct transcriptional and morphological consequences in early Drosophila embryos. , 1997, Development.

[33]  J. Sulston,et al.  Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. , 1980, Developmental biology.

[34]  C. Marshall,et al.  Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation , 1995, Cell.

[35]  P. Sternberg,et al.  Genetics of RAS signaling in C. elegans. , 1998, Trends in genetics : TIG.

[36]  P. Sternberg,et al.  Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia , 1999, Current Biology.

[37]  P. Sternberg,et al.  Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in C. elegans. , 1998, Development.

[38]  Stuart K. Kim,et al.  The LIN-2/LIN-7/LIN-10 Complex Mediates Basolateral Membrane Localization of the C. elegans EGF Receptor LET-23 in Vulval Epithelial Cells , 1998, Cell.

[39]  C. Marshall,et al.  MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. , 1994, Current opinion in genetics & development.

[40]  H. Horvitz,et al.  C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains , 1992, Nature.

[41]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[42]  P. Sternberg,et al.  Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl , 1995, Science.

[43]  D. Baillie,et al.  The unc-22(IV) region of Caenorhabditis elegans: genetic analysis of lethal mutations. , 1988, Genetics.

[44]  M. Wigler,et al.  Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. , 1993, Science.

[45]  P. Sternberg,et al.  The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. , 1990, Genetics.

[46]  K. Guan,et al.  Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. , 1995, Development.

[47]  P. Sternberg,et al.  Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor. , 1997, Molecular biology of the cell.

[48]  A. Hall,et al.  A Conserved Binding Motif Defines Numerous Candidate Target Proteins for Both Cdc42 and Rac GTPases (*) , 1995, The Journal of Biological Chemistry.

[49]  S. K. Kim,et al.  Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. , 1997, Genes & development.

[50]  Julian Downward,et al.  Epidermal growth factor regulates p21 ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor , 1993, Cell.

[51]  L. Lim,et al.  A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42 , 1993, Nature.

[52]  Thomas R Clandinin,et al.  Different Levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates , 1995, Cell.

[53]  H. Horvitz,et al.  Genes involved in two Caenorhabditis elegans cell-signaling pathways. , 1992, Cold Spring Harbor symposia on quantitative biology.

[54]  J. McCarter,et al.  On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. , 1999, Developmental biology.