A level set–based method for stress‐constrained multimaterial topology optimization of minimizing a global measure of stress

[1]  Xu Guo,et al.  Stress-related topology optimization of continuum structures involving multi-phase materials , 2014 .

[2]  E. Fancello,et al.  Topology optimization with local stress constraint based on level set evolution via reaction–diffusion , 2016 .

[3]  Jian Zhang,et al.  Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons , 2016 .

[4]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[5]  J. N. Reddy,et al.  A new multi-p-norm formulation approach for stress-based topology optimization design , 2016 .

[6]  Weihong Zhang,et al.  Integrated layout design of multi‐component system , 2009 .

[7]  K. Saitou,et al.  Multi-material topology optimization using ordered SIMP interpolation , 2016, Structural and Multidisciplinary Optimization.

[8]  Xu Guo,et al.  Topology optimization with multiple materials via moving morphable component (MMC) method , 2018 .

[9]  Z. Kang,et al.  Structural topology optimization with minimum distance control of multiphase embedded components by level set method , 2016 .

[10]  Liang Gao,et al.  Stress‐based multi‐material topology optimization of compliant mechanisms , 2018 .

[11]  Michael Yu Wang,et al.  Optimal topology design of continuum structures with stress concentration alleviation via level set method , 2013 .

[12]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[13]  M. Bruggi On an alternative approach to stress constraints relaxation in topology optimization , 2008 .

[14]  Ole Sigmund,et al.  New Developments in Handling Stress Constraints in Optimal Material Distributions , 1998 .

[15]  Fred van Keulen,et al.  Damage approach: A new method for topology optimization with local stress constraints , 2016 .

[16]  Julián A. Norato,et al.  Stress-based topology optimization for continua , 2010 .

[17]  J. Korvink,et al.  Adaptive moving mesh level set method for structure topology optimization , 2008 .

[18]  Jian Zhang,et al.  A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model , 2016 .

[19]  Z. Kang,et al.  A multi-material level set-based topology and shape optimization method , 2015 .

[20]  Erik Holmberg,et al.  Stress constrained topology optimization , 2013, Structural and Multidisciplinary Optimization.

[21]  Matteo Bruggi,et al.  Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance , 2017 .

[22]  M. Wang,et al.  Piecewise constant level set method for structural topology optimization , 2009 .

[23]  Olivier Bruls,et al.  Topology and generalized shape optimization: Why stress constraints are so important? , 2008 .

[24]  Michael Yu Wang,et al.  Design of piezoelectric actuators using a multiphase level set method of piecewise constants , 2009, J. Comput. Phys..

[25]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[26]  Dong-Hoon Choi,et al.  Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials , 2014 .

[27]  Fred van Keulen,et al.  A unified aggregation and relaxation approach for stress-constrained topology optimization , 2017 .

[28]  Zhan Kang,et al.  Layout design of reinforced concrete structures using two-material topology optimization with Drucker–Prager yield constraints , 2013 .

[29]  Ming Li,et al.  A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures , 2017, Computational Mechanics.

[30]  Nianfeng Wang,et al.  Hierarchical optimization for topology design of multi-material compliant mechanisms , 2017 .

[31]  M. Bendsøe,et al.  Topology optimization of continuum structures with local stress constraints , 1998 .

[32]  Luzhong Yin,et al.  Optimality criteria method for topology optimization under multiple constraints , 2001 .

[33]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[34]  J. T. Pereira,et al.  Topology optimization of continuum structures with material failure constraints , 2004 .

[35]  G. Cheng,et al.  ε-relaxed approach in structural topology optimization , 1997 .

[36]  M. Wang,et al.  Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization , 2013 .

[37]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[38]  I. Colominas,et al.  Block aggregation of stress constraints in topology optimization of structures , 2007, Adv. Eng. Softw..

[39]  Z. Kang,et al.  An enhanced aggregation method for topology optimization with local stress constraints , 2013 .

[40]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[41]  M. Wang,et al.  A level set‐based parameterization method for structural shape and topology optimization , 2008 .

[42]  G. Allaire,et al.  Topology optimization for minimum stress design with the homogenization method , 2004 .

[43]  Ren-Jye Yang,et al.  Stress-based topology optimization , 1996 .

[44]  Michael Yu Wang,et al.  Optimal topology design of steel-concrete composite structures under stiffness and strength constraints , 2012 .

[45]  T. Shi,et al.  A level set solution to the stress-based structural shape and topology optimization , 2012 .