Model reduction of Markov chains via low-rank approximation
暂无分享,去创建一个
[1] Sean P. Meyn,et al. An information-theoretic framework to aggregate a Markov chain , 2009, 2009 American Control Conference.
[2] Fady Alajaji,et al. The Kullback-Leibler divergence rate between Markov sources , 2004, IEEE Transactions on Information Theory.
[3] Ian R. Petersen,et al. Probabilistic distances between finite-state finite-alphabet hidden Markov models , 2005, IEEE Transactions on Automatic Control.
[4] Sean P. Meyn,et al. Optimal Kullback-Leibler Aggregation via Spectral Theory of Markov Chains , 2011, IEEE Transactions on Automatic Control.
[5] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[6] Tiejun Li,et al. Optimal partition and effective dynamics of complex networks , 2008, Proceedings of the National Academy of Sciences.
[7] Gabriele Steidl,et al. Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..
[8] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[9] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[10] S. Meyn,et al. Phase transitions and metastability in Markovian and molecular systems , 2004 .
[11] Herbert A. Simon,et al. Aggregation of Variables in Dynamic Systems , 1961 .
[12] Mathukumalli Vidyasagar,et al. Reduced-order modeling of Markov and hidden Markov processes via aggregation , 2010, 49th IEEE Conference on Decision and Control (CDC).
[13] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[14] J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .