Blind identification of code word length for non-binary error-correcting codes in noisy transmission

In cognitive radio context, the parameters of coding schemes are unknown at the receiver. The design of an intelligent receiver is then essential to blindly identify these parameters from the received data. The blind identification of code word length has already been extensively studied in the case of binary error-correcting codes. Here, we are interested in non-binary codes where a noisy transmission environment is considered. To deal with the blind identification problem of code word length, we propose a technique based on the Gauss-Jordan elimination in GF(q) (Galois field), with q=2m, where m is the number of bits per symbol. This proposed technique is based on the information provided by the arithmetic mean of the number of zeros in each column of these matrices. The robustness of our technique is studied for different code parameters and over different Galois fields.

[1]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[2]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[3]  F. Chabaud,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to Primitive Narrow-Sense BCH Codes of Length~511 , 1995 .

[4]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[5]  Anne Canteaut,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length , 1998 .

[6]  Irving S. Reed,et al.  Reed-Solomon Codes , 1999 .

[7]  Antoine Valembois,et al.  Detection and recognition of a binary linear code , 2001, Discret. Appl. Math..

[8]  David Declercq,et al.  Fast decoding algorithm for LDPC over GF(2/sup q/) , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[9]  G. Burel,et al.  Blind Estimation of Encoder and Interleaver Characteristics in a Non Cooperative Context , 2003 .

[10]  D. Declercq,et al.  Fast Decoding Algorithm for LDPC over GF(2q) , 2003 .

[11]  Yong Li,et al.  Performance comparison between non-binary LDPC codes and Reed-Solomon codes over noise bursts channels , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[12]  Sébastien Houcke,et al.  Blind detection of interleaver parameters , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[13]  Mathieu Cluzeau,et al.  Block code reconstruction using iterative decoding techniques , 2006, 2006 IEEE International Symposium on Information Theory.

[14]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[15]  G. Lechner,et al.  Decoding of LDPC codes with binary vector messages and scalable complexity , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.

[16]  Li Zhang,et al.  Non-binary LDPC codes vs. Reed-Solomon codes , 2008, 2008 Information Theory and Applications Workshop.

[17]  J.A. Briffa,et al.  Non-binary turbo codes and applications , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.

[18]  Nicolas Sendrier,et al.  Reconstruction of convolutional codes from noisy observation , 2009, 2009 IEEE International Symposium on Information Theory.

[19]  R. Gautier,et al.  Dual Code Method for Blind Identification of Convolutional Encoder for Cognitive Radio Receiver Design , 2009, 2009 IEEE Globecom Workshops.

[20]  Matthieu Finiasz,et al.  Recovering a code's length and synchronization from a noisy intercepted bitstream , 2009, 2009 IEEE International Symposium on Information Theory.

[21]  David Declercq,et al.  Low-complexity decoding for non-binary LDPC codes in high order fields , 2010, IEEE Transactions on Communications.

[22]  Roland Gautier,et al.  Blind Identification of Convolutional Encoder Parameters over GF(2m) in the Noiseless Case , 2011, 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN).

[23]  Roland Gautier,et al.  Blind recovery of k/n rate convolutional encoders in a noisy environment , 2011, EURASIP J. Wirel. Commun. Netw..

[24]  Emanuel Radoi,et al.  Focus on theoretical properties of blind convolutional codes identification methods based on rank criterion , 2012, 2012 9th International Conference on Communications (COMM).

[25]  Yang Yu,et al.  Design of Low Complexity Non-Binary LDPC Codes with an Approximated Performance-Complexity Tradeoff , 2012, IEEE Communications Letters.

[26]  Yasamine Zrelli Identification aveugle de codes correcteurs d'erreurs basés sur des grands corps de Galois et recherche d'algorithmes de type décision souple pour les codes convolutifs , 2013 .

[27]  Edgar Martínez Moro Algebraic geometry modeling in information theory , 2013 .

[28]  Tian Xia,et al.  Blind Identification of Nonbinary LDPC Codes Using Average LLR of Syndrome a Posteriori Probability , 2013, IEEE Communications Letters.

[29]  Stefano Cioni,et al.  Advanced Coding Schemes against Jamming in Telecommand Links , 2013, MILCOM 2013 - 2013 IEEE Military Communications Conference.

[30]  Jing Zhou,et al.  Information-Dispersion-Entropy-Based Blind Recognition of Binary BCH Codes in Soft Decision Situations , 2013, Entropy.

[31]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .