Promoting optofluidic actuation of microparticles with plasmonic nanoparticles

The amplitude of optical forces on flowing dielectric microparticles can be actuated by coating them partially with metallic nanospheres and exposing them to laser light within the surface plasmon resonance. Here, optical forces on both pure silica particles and silica-gold raspberries are characterized within an optical chromatography setup by measuring the Stokes drag versus laser beam power. Results are compared to Mie theory predictions for both core dielectric particles and core-shell ones where the shell is described by a continuous dielectricmetal composite of dielectric constant determined from the Maxwell Garnett approach. The nice observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration present at the microparticle surface and that nano-metallic objects increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as “micro-sized nanoparticles", the benefit of microparticles coated with metallic nanospheres is thus twofold: (i) to enhance optofluidic manipulation and transport at the microscale and (ii) to increase sensing capabilities at the nanoscale, compared to separated pure dielectric particles and single metallic nanosystems.

[1]  N. Scherer,et al.  Plasmon-driven selective deposition of au bipyramidal nanoparticles. , 2011, Nano letters.

[2]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[3]  S. Bhattacharya,et al.  Size-dependent interaction of gold nanoparticles with transport protein: A spectroscopic study , 2008 .

[4]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[5]  M. Delville,et al.  Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[6]  M. Delville,et al.  Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing , 2012 .

[7]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[8]  S. Ghosh,et al.  Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling. , 2007, Journal of colloid and interface science.

[9]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[10]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[11]  Marta Ibisate,et al.  Refractive Index Properties of Calcined Silica Submicrometer Spheres , 2002 .

[12]  S. Hart,et al.  On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis. , 2010, Optics express.

[13]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[14]  S. Y. Kim,et al.  Radiation pressure efficiency measurements of nanoparticle coated microspheres , 2013 .

[15]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[16]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[17]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[18]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[19]  Tan Pham,et al.  Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers , 2002 .

[20]  Romain Quidant,et al.  Tunable optical sorting and manipulation of nanoparticles via plasmon excitation. , 2006, Optics letters.

[21]  M. Delville,et al.  Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  M. Pemble,et al.  A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals , 2012 .

[23]  Alexey N. Bashkatov,et al.  Water refractive index in dependence on temperature and wavelength: a simple approximation , 2003, Saratov Fall Meeting.

[24]  Taewook Kang,et al.  Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. , 2012, Journal of the American Chemical Society.

[25]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[26]  Kuan Fang Ren,et al.  Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects , 1994 .

[27]  L. Liz‐Marzán,et al.  Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach , 2004 .

[28]  M. Delville,et al.  Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles. , 2014, Optics express.

[29]  Christian Mätzler,et al.  MATLAB Functions for Mie Scattering and Absorption , 2002 .

[30]  F. Lederer,et al.  Optical properties of a fabricated self-assembled bottom-up bulk metamaterial. , 2011, Optics express.

[31]  J. Squier,et al.  Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. , 2006, Lab on a chip.

[32]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[33]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[34]  D. Grier A revolution in optical manipulation , 2003, Nature.

[35]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[36]  T. Imasaka,et al.  Theory of optical chromatography. , 1997, Analytical chemistry.

[37]  Alex Terray,et al.  Cascade optical chromatography for sample fractionation. , 2009, Biomicrofluidics.

[38]  Raoul Kopelman,et al.  Optical manipulation of metal-silica hybrid nanoparticles , 2004, SPIE Optics + Photonics.

[39]  Sean J. Hart,et al.  Particle separation and collection using an optical chromatographic filter , 2007 .

[40]  Rebekah A Drezek,et al.  Optical properties of gold-silica-gold multilayer nanoshells. , 2008, Optics express.

[41]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[42]  Walter J. Riker A Review of J , 2010 .

[43]  Sean J. Hart,et al.  Refractive-index-driven separation of colloidal polymer particles using optical chromatography , 2003 .

[44]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[45]  J. Galaup,et al.  Nanometer gold–silica composite particles manipulated by optical tweezers , 2009 .

[46]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[47]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[48]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[49]  G. Badenes,et al.  Simple Route for Preparing Optically Trappable Probes for Surface-Enhanced Raman Scattering , 2009 .

[50]  T. Čižmár,et al.  Bidirectional optical sorting of gold nanoparticles. , 2012, Nano letters.