A scaling algorithm for optimizing arbitrary functions over vertices of polytopes
暂无分享,去创建一个
[1] Friedrich Eisenbrand,et al. On Sub-determinants and the Diameter of Polyhedra , 2014, Discret. Comput. Geom..
[2] Shinji Mizuno,et al. A bound for the number of different basic solutions generated by the simplex method , 2011, Mathematical Programming.
[3] András Frank,et al. An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..
[4] Jesús A. De Loera,et al. On Augmentation Algorithms for Linear and Integer-Linear Programming: From Edmonds-Karp to Bland and Beyond , 2014, SIAM J. Optim..
[5] Andreas S. Schulz,et al. 0/1-Integer Programming: Optimization and Augmentation are Equivalent , 1995, ESA.
[6] Abraham P. Punnen,et al. Approximate local search in combinatorial optimization , 2004, SODA '04.
[7] Andreas S. Schulz. On the Relative Complexity of 15 Problems Related to 0/1-Integer Programming , 2008, Bonn Workshop of Combinatorial Optimization.
[8] Martin E. Dyer,et al. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm , 1994, IPCO.
[9] Denis Naddef,et al. The hirsch conjecture is true for (0, 1)-polytopes , 1989, Math. Program..
[10] Peter Kleinschmidt,et al. On the diameter of convex polytopes , 1992, Discret. Math..