Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations

We establish a geometric condition guaranteeing exact copositive relaxation for the nonconvex quadratic optimization problem under two quadratic and several linear constraints, and present sufficient conditions for global optimality in terms of generalized Karush–Kuhn–Tucker multipliers. The copositive relaxation is tighter than the usual Lagrangian relaxation. We illustrate this by providing a whole class of quadratic optimization problems that enjoys exactness of copositive relaxation while the usual Lagrangian duality gap is infinite. Finally, we also provide verifiable conditions under which both the usual Lagrangian relaxation and the copositive relaxation are exact for an extended CDT (two-ball trust-region) problem. Importantly, the sufficient conditions can be verified by solving linear optimization problems.

[1]  Immanuel M. Bomze Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs , 2013 .

[2]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[3]  Chung-Piaw Teo,et al.  Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation , 2009, Oper. Res..

[4]  Joaquim Júdice,et al.  Copositivity and constrained fractional quadratic problems , 2014, Math. Program..

[5]  Mirjam Dür,et al.  Algorithmic copositivity detection by simplicial partition , 2008 .

[6]  Yonina C. Eldar,et al.  Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints , 2006, SIAM J. Optim..

[7]  Peter J. C. Dickinson,et al.  On the computational complexity of membership problems for the completely positive cone and its dual , 2014, Comput. Optim. Appl..

[8]  Vaithilingam Jeyakumar,et al.  Alternative Theorems for Quadratic Inequality Systems and Global Quadratic Optimization , 2009, SIAM J. Optim..

[9]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[10]  Daniel Kuhn,et al.  Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls , 2016, Oper. Res..

[11]  Immanuel M. Bomze,et al.  New Lower Bounds and Asymptotics for the cp-Rank , 2015, SIAM J. Matrix Anal. Appl..

[12]  Samuel Burer,et al.  A Two-Variable Approach to the Two-Trust-Region Subproblem , 2016, SIAM J. Optim..

[13]  Frédéric Roupin,et al.  Partial Lagrangian relaxation for general quadratic programming , 2007, 4OR.

[14]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[15]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[16]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[17]  Samuel Burer,et al.  Second-Order-Cone Constraints for Extended Trust-Region Subproblems , 2013, SIAM J. Optim..

[18]  Marco Locatelli,et al.  Exactness conditions for an SDP relaxation of the extended trust region problem , 2016, Optim. Lett..

[19]  Jean B. Lasserre,et al.  A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..

[20]  Shuzhong Zhang,et al.  Strong Duality for the CDT Subproblem: A Necessary and Sufficient Condition , 2008, SIAM J. Optim..

[21]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[22]  Sunyoung Kim,et al.  Solving Global Optimization Problems with Sparse Polynomials and Unbounded Semialgebraic Feasible Sets , 2014 .

[23]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[24]  Samuel Burer,et al.  A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides , 2016, Comput. Optim. Appl..

[25]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[26]  Karthik Natarajan,et al.  MIXED ZERO-ONE LINEAR PROGRAMS UNDER OBJECTIVE UNCERTAINTY : A COMPLETELY POSITIVE REPRESENTATION , 2010 .

[27]  Florian Jarre,et al.  New results on the cp-rank and related properties of co(mpletely )positive matrices , 2015 .

[28]  Daniel Bienstock,et al.  A Note on Polynomial Solvability of the CDT Problem , 2014, SIAM J. Optim..

[29]  Immanuel M. Bomze,et al.  Copositive Relaxation Beats Lagrangian Dual Bounds in Quadratically and Linearly Constrained Quadratic Optimization Problems , 2015, SIAM J. Optim..

[30]  Henry Wolkowicz,et al.  Zero duality gaps in infinite-dimensional programming , 1990 .

[31]  Erick Delage,et al.  Linearized Robust Counterparts of Two-Stage Robust Optimization Problems with Applications in Operations Management , 2016, INFORMS J. Comput..

[32]  M. J. D. Powell,et al.  On fast trust region methods for quadratic models with linear constraints , 2015, Math. Program. Comput..

[33]  Vaithilingam Jeyakumar,et al.  Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization , 2013, Mathematical Programming.

[34]  Mirjam Dür,et al.  An Adaptive Linear Approximation Algorithm for Copositive Programs , 2009, SIAM J. Optim..

[35]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[36]  S. Kim,et al.  Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets , 2016, J. Glob. Optim..

[37]  Masakazu Kojima,et al.  Exploiting Sparsity in SDP Relaxation of Polynomial Optimization Problems , 2012 .

[38]  Michael L. Overton,et al.  Narrowing the difficulty gap for the Celis–Dennis–Tapia problem , 2015, Math. Program..

[39]  I. Bomze,et al.  Copositivity-based approximations for mixed-integer fractional quadratic optimization , 2015 .

[40]  Jean B. Lasserre,et al.  New approximations for the cone of copositive matrices and its dual , 2010, Mathematical Programming.

[41]  Immanuel M. Bomze,et al.  Copositive Optimization , 2009, Encyclopedia of Optimization.