Microarray oligonucleotide probes.

Oligonucleotide probes are increasingly the method of choice for many modern DNA microarray applications. They provide higher target specificity, probe selection gives improved experimental control of hybridization properties, and targeting of specific gene subsequences allows better discrimination of highly similar targets such as splice variants or gene families. Only recently has there been substantial progress in dealing with the complexities of probe set design and probe-specific signal interpretation. After a discussion of advantages and disadvantages of oligonucleotide probes in comparison to amplicons, this chapter focuses on recent advances and remaining key challenges in probe design and computational data analysis for spotted and in situ-synthesized oligonucleotide microarray technologies. Both experimental questions and computational aspects are addressed. Experimental issues discussed include the choice of an optimal number of probes per target and probe lengths and their influence on bias and random measurement noise, effects of different probe or substrate modifications, and laboratory protocols on signal specificity and sensitivity. Computational topics include practical considerations and a case study in probe sequence design, the exploitation of probing multiple target regions, and the modeling of probe sequence-specific signals. The current state of the art of the field is examined, and principled thermodynamic probe design criteria are proposed that are based on the free energy of the probe-target complex at the hybridization temperature rather than its melting temperature. Finally, this chapter notes and discusses an emerging trend in recent computational work toward a focus on signal interpretation rather than probe sequence design.

[1]  J. Lieb,et al.  Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. , 2004, Current opinion in genetics & development.

[2]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[3]  Gos Micklem,et al.  Quantitative microarray spot profile optimization: A systematic evaluation of buffer/slide combinations , 2003, German Conference on Bioinformatics.

[4]  Henrik Bjørn Nielsen,et al.  OligoWiz 2.0—integrating sequence feature annotation into the design of microarray probes , 2005, Nucleic Acids Res..

[5]  Rolf Backofen,et al.  Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity , 2004, Nature Genetics.

[6]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[7]  J. SantaLucia,et al.  Improved nearest-neighbor parameters for predicting DNA duplex stability. , 1996, Biochemistry.

[8]  W. Rychlik,et al.  A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. , 1989, Nucleic acids research.

[9]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[10]  K. Aldape,et al.  A model of molecular interactions on short oligonucleotide microarrays , 2003, Nature Biotechnology.

[11]  J. SantaLucia,et al.  Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA. , 1998, Biochemistry.

[12]  Alexander Schliep,et al.  Selecting signature oligonucleotides to identify organisms using DNA arrays , 2002, Bioinform..

[13]  H. Blöcker,et al.  Predicting DNA duplex stability from the base sequence. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[15]  Christoph W Sensen,et al.  Osprey: a comprehensive tool employing novel methods for the design of oligonucleotides for DNA sequencing and microarrays. , 2004, Nucleic acids research.

[16]  Franco Cerrina,et al.  Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. , 2002, Genome research.

[17]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[18]  Xiaowei Wang,et al.  Selection of Oligonucleotide Probes for Protein Coding Sequences , 2003, Bioinform..

[19]  Sven Rahmann,et al.  Fast Large Scale Oligonucleotide Selection Using the Longest Common Factor Approach , 2003, J. Bioinform. Comput. Biol..

[20]  N. Sugimoto,et al.  Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. , 1996, Nucleic acids research.

[21]  J. SantaLucia,et al.  Thermodynamics and NMR of internal G.T mismatches in DNA. , 1997, Biochemistry.

[22]  Angela Relógio,et al.  Optimization of oligonucleotide-based DNA microarrays. , 2002, Nucleic acids research.

[23]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[24]  K. Peck,et al.  Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. , 2004, Nucleic acids research.

[25]  Wei Zhang,et al.  Data extraction from composite oligonucleotide microarrays. , 2003, Nucleic acids research.

[26]  Aaron P. Campbell,et al.  Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Adam Godzik,et al.  Clustering of highly homologous sequences to reduce the size of large protein databases , 2001, Bioinform..

[28]  K. Itakura,et al.  Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. , 1979, Nucleic acids research.

[29]  Laurent Duret,et al.  ROSO: optimizing oligonucleotide probes for microarrays , 2004, Bioinform..

[30]  J. Shaffer,et al.  Hybridization of synthetic oligodeoxyribonucleotides to ΦX 174 DNA: the effect of single base pair mismatch , 1979 .

[31]  Ben Lehner,et al.  Antisense transcripts in the human genome. , 2002, Trends in genetics : TIG.

[32]  Eugene W. Myers,et al.  Suffix arrays: a new method for on-line string searches , 1993, SODA '90.

[33]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[34]  M. Zuker,et al.  OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. , 2003, Nucleic acids research.

[35]  M. Zuker,et al.  Prediction of hybridization and melting for double-stranded nucleic acids. , 2004, Biophysical journal.

[36]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[37]  Niels Tolstrup,et al.  OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling , 2003, Nucleic Acids Res..

[38]  J. SantaLucia,et al.  Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. , 1999, Biochemistry.

[39]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[40]  P. Brown,et al.  Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  David M. MacAlpine,et al.  A genomic view of eukaryotic DNA replication , 2005, Chromosome Research.

[42]  Felix Naef,et al.  Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Jizhong Zhou,et al.  Empirical Establishment of Oligonucleotide Probe Design Criteria , 2005, Applied and Environmental Microbiology.

[45]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[46]  Jacques Schrenzel,et al.  A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus , 2005, BMC Genomics.

[47]  A. Brookes,et al.  Effect of oligonucleotide truncation on single-nucleotide distinction by solid-phase hybridization. , 2002, Analytical chemistry.

[48]  David P. Kreil,et al.  There is no silver bullet - a guide to low-level data transforms and normalisation methods for microarray data , 2005, Briefings Bioinform..

[49]  J. Castle,et al.  Genome-Wide Survey of Human Alternative Pre-mRNA Splicing with Exon Junction Microarrays , 2003, Science.

[50]  Nicolas Peyret,et al.  Effects of DNA secondary structure on oligonucleotide probe binding efficiency , 2005, Comput. Biol. Chem..

[51]  I. Tinoco,et al.  Stability of RNA hairpin loops: A6-Cm-U6 , 1973 .

[52]  A. Mirzabekov,et al.  Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. , 1998, Nucleic acids research.

[53]  G. Grinstein,et al.  Modeling of DNA microarray data by using physical properties of hybridization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Kimberly A. Smith,et al.  POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer , 2004, Genome Biology.

[55]  Jiasen Lu,et al.  Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. , 2000, Nucleic acids research.

[56]  J. SantaLucia,et al.  Nearest-neighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effects. , 1998, Biochemistry.

[57]  Erez Y. Levanon,et al.  Widespread occurrence of antisense transcription in the human genome , 2003, Nature Biotechnology.

[58]  J. SantaLucia,et al.  NMR solution structure of a DNA dodecamer containing single G.T mismatches. , 1998, Nucleic acids research.

[59]  Felix Naef,et al.  Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. , 2003, Nucleic acids research.

[60]  J. SantaLucia,et al.  Thermodynamics of internal C.T mismatches in DNA. , 1998, Nucleic acids research.

[61]  S. Batzoglou,et al.  Application of independent component analysis to microarrays , 2003, Genome Biology.

[62]  S. Lifson,et al.  Dependence of the melting temperature of DNA on salt concentration , 1965, Biopolymers.

[63]  Patrick S. Schnable,et al.  Picky: oligo microarray design for large genomes , 2004, Bioinform..

[64]  Nicholas F. Marko,et al.  A robust method for the amplification of RNA in the sense orientation , 2005, BMC Genomics.

[65]  David P. Kreil,et al.  Independent component analysis of microarray data in the study of endometrial cancer , 2004, Oncogene.

[66]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Christopher J. Lee,et al.  Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data. , 2004, Nucleic acids research.

[68]  R Nussinov,et al.  Speeding up the dynamic algorithm for planar RNA folding. , 1990, Mathematical biosciences.

[69]  Eric K. Nordberg,et al.  YODA: selecting signature oligonucleotides , 2005, Bioinform..

[70]  M. Sussman,et al.  Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array , 1999, Nature Biotechnology.

[71]  Christoph Gille,et al.  Oligodb-interactive design of oligo DNA for transcription profiling of human genes , 2002, Bioinform..

[72]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[73]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[74]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[75]  I Tinoco,et al.  Stability of RNA hairpin loops: A 6 -C m -U 6 . , 1973, Journal of molecular biology.

[76]  Eric E Schadt,et al.  Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing , 2003, Genome Biology.

[77]  Hao Chen,et al.  Oliz, a suite of Perl scripts that assist in the design of microarrays using 50mer oligonucleotides from the 3' untranslated region , 2002, BMC Bioinformatics.

[78]  R. Shippy,et al.  An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. , 2002, Nucleic acids research.

[79]  E. Southern,et al.  Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. , 1997, Nucleic acids research.

[80]  Michael Zuker,et al.  DINAMelt web server for nucleic acid melting prediction , 2005, Nucleic Acids Res..

[81]  A. Lash,et al.  FlyGEM, a full transcriptome array platform for the Drosophila community , 2004, Genome Biology.

[82]  C. Gibas,et al.  Secondary structure in the target as a confounding factor in synthetic oligomer microarray design , 2005, BMC Genomics.

[83]  M. Pirrung How to make a DNA chip. , 2002, Angewandte Chemie.

[84]  Sven Bergmann,et al.  Defining transcription modules using large-scale gene expression data , 2004, Bioinform..

[85]  R. Stoughton,et al.  Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays. , 2002, Nucleic acids research.

[86]  James R. Montgomery,et al.  A Generic Approach , 1989 .

[87]  K. Stengele,et al.  New Types of Very Efficient Photolabile Protecting Groups Based upon the [2-(2-Nitrophenyl)propoxy]carbonyl (NPPOC) Moiety , 2004 .

[88]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[89]  D. Crothers,et al.  Improved estimation of secondary structure in ribonucleic acids. , 1973, Nature: New biology.

[90]  David P. Kreil,et al.  Robotic spotting of cDNA and oligonucleotide microarrays. , 2005, Trends in biotechnology.

[91]  A. Caminade,et al.  Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. , 2003, Nucleic acids research.

[92]  Brendan J. Frey,et al.  Probabilistic Inference of Alternative Splicing Events in Microarray Data , 2004, NIPS.

[93]  David R. C. Hill,et al.  GoArrays: highly dynamic and efficient microarray probe design , 2005, Bioinform..

[94]  C. Chothia,et al.  Currents in Computational Molecular Biology , 2000 .

[95]  Sirpa Mäki,et al.  The computer program , 1980 .

[96]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[97]  R. Tempelman,et al.  Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts. , 2003, Physiological genomics.

[98]  Gary D. Stormo,et al.  Selection of optimal DNA oligos for gene expression arrays , 2001, Bioinform..

[99]  Thomas E. Royce,et al.  Global Identification of Human Transcribed Sequences with Genome Tiling Arrays , 2004, Science.

[100]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[101]  Nam Quoc Ngo,et al.  The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates , 1997 .

[102]  Harold R Garner,et al.  Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts. , 2003, Nucleic acids research.

[103]  F. Cohen,et al.  Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray , 2003, Genome Biology.

[104]  David Haussler,et al.  Gene structure-based splice variant deconvolution using a microarry platform , 2003, ISMB.

[105]  M. Israel,et al.  A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. , 1979, The Journal of biological chemistry.

[106]  Ben Lehner,et al.  In search of antisense. , 2004, Trends in biochemical sciences.

[107]  Jean-Marie Rouillard,et al.  OligoArray: genome-scale oligonucleotide design for microarrays , 2002, Bioinform..

[108]  F. Kramer,et al.  Thermodynamic basis of the enhanced specificity of structured DNA probes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[109]  I. Tinoco,et al.  Stability of ribonucleic acid double-stranded helices. , 1974, Journal of molecular biology.

[110]  Nicolas Le Nov MELTING, computing the melting temperature of nucleic acid duplex , 2001 .

[111]  Steen Knudsen,et al.  Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays , 2003, Nucleic Acids Res..

[112]  J. Hoheisel,et al.  Production by quantitative photolithographic synthesis of individually quality checked DNA microarrays. , 2000, Nucleic acids research.

[113]  Chris Sander,et al.  Removing near-neighbour redundancy from large protein sequence collections , 1998, Bioinform..