Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis

[1]  D. Kolb UHV Techniques in the Study of Electrode Surfaces , 1987 .

[2]  H. Brongersma,et al.  Surface composition analysis by low-energy ion scattering , 2007 .

[3]  James R. McKone,et al.  Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution , 2013 .

[4]  Joshua M. Spurgeon,et al.  Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. , 2014, Physical chemistry chemical physics : PCCP.

[5]  M. N. Mahmood,et al.  Low overvoltage electrocatalysts for hydrogen evolving electrodes , 1981 .

[6]  N. Krstajić,et al.  Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes , 2000 .

[7]  P. Vanýsek Modern techniques in electroanalysis , 1996 .

[8]  Xiaojing Yang,et al.  Single Crystal Growth of Birnessite- and Hollandite-Type Manganese Oxides by a Flux Method , 2003 .

[9]  Sasha Omanovic,et al.  Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium , 2005 .

[10]  J. Yates,et al.  Experimental Innovations in Surface Science: A Guide to Practical Laboratory Methods and Instruments , 2015 .

[11]  M. Schlegel,et al.  In situ grazing-incidence X-ray diffraction during electrodeposition of birnessite thin films: Identification of solid precursors , 2011 .

[12]  Leonzio Rizzo,et al.  N , 1857, Notions d'histoire de la traduction.

[13]  C. Amatore Editorial: Frontiers of Electrochemistry , 2003 .

[14]  D. A. Shirley High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[15]  A. Chaussé,et al.  Studies of electrodeposition from Mn(II) species of thin layers of birnessite onto transparent semiconductor , 2008 .

[16]  T. Jaramillo,et al.  Thin Films of Sodium Birnessite-Type MnO2: Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry , 2011 .

[17]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[18]  I. Villegas,et al.  Ordering of Copper Single‐Crystal Surfaces in Solution Confirmation by Low Energy Electron Diffraction , 1990 .

[19]  Kingo Itaya,et al.  In situ scanning tunneling microscopy in electrolyte solutions , 1998 .

[20]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[21]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[22]  Youn-Geun Kim,et al.  Molecular catalysis that transpires only when the complex is heterogenized: Studies of a hydrogenase complex surface-tethered on polycrystalline and (1 1 1)-faceted gold by EC, PM-FT-IRRAS, HREELS, XPS and STM , 2014 .

[23]  V. Jović,et al.  Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution , 2008 .

[24]  D. Sokaras,et al.  On the chemical state of Co oxide electrocatalysts during alkaline water splitting. , 2013, Physical chemistry chemical physics : PCCP.

[25]  A. Hubbard Electrochemistry of well-defined surfaces , 1980 .

[26]  Philipp Kurz,et al.  Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'. , 2012, Dalton transactions.

[27]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[28]  M. Soriaga Ultra-high vacuum techniques in the study of single-crystal electrode surfaces , 1992 .

[29]  D. Veblen,et al.  Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method , 1990 .

[30]  A. Bell,et al.  In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen , 2012 .

[31]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[32]  E. Yeager,et al.  Spectroscopic techniques for the study of solid–liquid interfaces , 1982 .

[33]  Eiji Akiyama,et al.  Characterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution , 1997 .

[34]  Venkatasubramanian Viswanathan,et al.  Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode , 2013, Nature Communications.

[35]  M. Koper Fuel cell catalysis: a surface science approach. , 2008 .

[36]  M. Hochella,et al.  Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants. , 2010, Environmental science & technology.

[37]  A. Wiȩckowski,et al.  Ultrahigh Vacuum Surface Analytical Methods in Electrochemical Studies of Single-Crystal Surfaces. , 1996 .

[38]  M. N. Mahmood,et al.  Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions , 1984 .

[39]  T. Jaramillo,et al.  In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. , 2013, Journal of the American Chemical Society.

[40]  H. Grabke R. Vanselow, R. Howe (Eds.): Chemistry and Physics of Solid Surfaces IV, Vol. 20 aus: Chemical Physics, Springer-Verlag, Berlin, Heidelberg, New York 1982. 496 Seiten, Preis: DM 98.— , 1983 .

[41]  Lijun Bai,et al.  H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H , 1986 .

[42]  E. Taglauer,et al.  Low-energy ion scattering at surfaces , 1993 .

[43]  Peidong Yang,et al.  Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. , 2011, Journal of the American Chemical Society.

[44]  Danjuma Tali Nimfa,et al.  - int , 2004 .

[45]  S. Trasatti Surface science and electrochemistry: concepts and problems , 1995 .

[46]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[47]  K. Oguro,et al.  Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model , 1999 .

[48]  Andrew G. Glen,et al.  APPL , 2001 .

[49]  M. Najafpour,et al.  Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally , 2011 .

[50]  Bruce S. Brunschwig,et al.  Earth-abundant hydrogen evolution electrocatalysts , 2014 .

[51]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[52]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[53]  D. Piron,et al.  Study of Electrodeposited Nickel‐Molybdenum, Nickel‐Tungsten, Cobalt‐Molybdenum, and Cobalt‐Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis , 1994 .

[54]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[55]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[56]  W. Schirmer,et al.  Introduction to Surface Chemistry and Catalysis , 1995 .

[57]  W. Casey,et al.  Water-oxidation catalysis by manganese in a geochemical-like cycle. , 2011, Nature chemistry.

[58]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[59]  G. Sposito,et al.  Understanding the trends in transition metal sorption by vacancy sites in birnessite , 2013 .

[60]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[61]  M. Graetzel,et al.  Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light , 1981 .

[62]  K. Cummins,et al.  Structure and composition of Cu(hkl) surfaces exposed to O2 and emersed from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction at well-defined copper catalysts , 2014 .

[63]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[64]  Steven L. Suib,et al.  Low energy electrons and surface chemistry , 1987 .

[65]  Jing-ying Xie,et al.  From spinel Mn3O4 to layered nanoarchitectures using electrochemical cycling and the distinctive pseudocapacitive behavior , 2007 .

[66]  D. Piron,et al.  Hydrogen evolution on electrodeposited nickel-cobalt-molybdenum in alkaline water electrolysis , 1994 .

[67]  V. Suriyanon,et al.  IN R , 2006 .

[68]  M. Straumanis,et al.  Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase , 1969 .