Variability in Protein Expression in Marine-Derived Purpureocillium lilacinum Subjected to Salt and Chromium Stresses

[1]  Nikita P Lotlikar,et al.  Potential of Marine-Derived Fungi to Remove Hexavalent Chromium Pollutant from Culture Broth , 2018, Indian Journal of Microbiology.

[2]  Xiao-fu Zhou,et al.  Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall , 2017, Biology Direct.

[3]  J. Helmann,et al.  Metal homeostasis and resistance in bacteria , 2017, Nature Reviews Microbiology.

[4]  Bin Gong,et al.  Endophytic fungus Purpureocillium sp. A5 protect mangrove plant Kandelia candel under copper stress , 2017, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[5]  Yannong Xiao,et al.  Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1 , 2016, Front. Microbiol..

[6]  A. Adholeya,et al.  Whole genome annotation and comparative genomic analyses of bio-control fungus Purpureocillium lilacinum , 2015, BMC Genomics.

[7]  L. Nie,et al.  Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique , 2015, Front. Plant Sci..

[8]  C. Beaven,et al.  Physiological Comparison of Concentric and Eccentric Arm Cycling in Males and Females , 2014, PloS one.

[9]  A. Rehman,et al.  Redox Proteomics Changes in the Fungal Pathogen Trichosporon asahii on Arsenic Exposure: Identification of Protein Responses to Metal-Induced Oxidative Stress in an Environmentally-Sampled Isolate , 2014, PloS one.

[10]  N. Tuteja,et al.  Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes , 2014, Protoplasma.

[11]  S. Ruppel,et al.  Properties of the halophyte microbiome and their implications for plant salt tolerance. , 2013, Functional plant biology : FPB.

[12]  C. Hauton,et al.  The use of stress‐70 proteins in physiology: a re‐appraisal , 2013, Molecular ecology.

[13]  S. Komatsu,et al.  Contribution of proteomic studies towards understanding plant heavy metal stress response , 2013, Front. Plant Sci..

[14]  G. Varatharajan,et al.  A role for antioxidants in acclimation of marine derived pathogenic fungus (NIOCC 1) to salt stress. , 2012, Microbial pathogenesis.

[15]  X. Van Ostade,et al.  Comparative proteomics of copper exposure and toxicity in rainbow trout, common carp and gibel carp. , 2012, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[16]  M. Rillig,et al.  The Influence of Different Stresses on Glomalin Levels in an Arbuscular Mycorrhizal Fungus—Salinity Increases Glomalin Content , 2011, PloS one.

[17]  K. Gevaert,et al.  Diversity in Protein Glycosylation among Insect Species , 2011, PloS one.

[18]  B. Joseph,et al.  Proteomic analysis of salinity stress-responsive proteins in plants. , 2010 .

[19]  N. Gunde-Cimerman,et al.  Morphological Response of the Halophilic Fungal Genus Wallemia to High Salinity , 2009, Applied and Environmental Microbiology.

[20]  J. Quinn,et al.  A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress‐activated MAPK in regulating the stress‐induced proteome , 2009, Proteomics.

[21]  C. Lian,et al.  Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. , 2009, Annals of botany.

[22]  I. Stansfield,et al.  Phylogenetic diversity of stress signalling pathways in fungi , 2009, BMC Evolutionary Biology.

[23]  M. Kulkarni,et al.  Characterization of the proteins of bacterial strain isolated from contaminated site involved in heavy metal resistance--a proteomic approach. , 2007, Journal of biotechnology.

[24]  L. Choe,et al.  Metaproteomic analysis of a bacterial community response to cadmium exposure. , 2007, Journal of proteome research.

[25]  Krishnan Raghunathan,et al.  Bioinformatics Discovery Note in Silico Identification of Putative Metal Binding Motifs , 2022 .

[26]  T. S. Suryanarayanan,et al.  Strategies for osmoregulation in the marine fungus Cirrenalia pygmea Kohl. (Hyphomycetes) , 2006 .

[27]  E. Achterberg,et al.  PRODUCTION OF PHYTOCHELATINS AND GLUTATHIONE BY MARINE PHYTOPLANKTON IN RESPONSE TO METAL STRESS 1 , 2006 .

[28]  F. Grassi,et al.  Zea mays L. protein changes in response to potassium dichromate treatments. , 2006, Chemosphere.

[29]  N. Sherman,et al.  The Preparation of Protein Digests for Mass Spectrometric Sequencing Experiments , 2005 .

[30]  W. Bae,et al.  Proteomic Study for the Cellular Responses to Cd2+ in Schizosaccharomyces pombe Through Amino Acid-coded Mass Tagging and Liquid Chromatography Tandem Mass Spectrometry*S , 2004, Molecular & Cellular Proteomics.

[31]  N. Gunde-Cimerman,et al.  Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi , 2004, Extremophiles.

[32]  S. Clemens Molecular mechanisms of plant metal tolerance and homeostasis , 2001, Planta.

[33]  N. Sherman,et al.  Protein Sequencing and Identification Using Tandem Mass Spectrometry: Kinter/Tandem Mass Spectrometry , 2000 .

[34]  G. Gadd,et al.  The Osmotic Responses of Penicillium ochro-chloron: Changes in Internal Solute Levels in Response to Copper and Salt Stress , 1984 .

[35]  D. W. Ewer,et al.  Observations on the myo-neural physiology of a polyclad flatworm: inhibitory systems. , 1970, The Journal of experimental biology.

[36]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[37]  R. Aroca,et al.  Salinity stress alleviation using arbuscular mycorrhizal fungi. A review , 2011, Agronomy for Sustainable Development.

[38]  H. Bothe,et al.  Arbuscular mycorrhiza and heavy metal tolerance. , 2007, Phytochemistry.

[39]  J. Hall Cellular mechanisms for heavy metal detoxification and tolerance. , 2002, Journal of experimental botany.

[40]  N. Hernández-Saavedra,et al.  Osmotic adjustment in marine yeast , 1995 .

[41]  M. Kapoor A study of the effect of heat shock and metal ions on protein synthesis in Neurospora crassa cells , 1986 .

[42]  R. Dernick,et al.  Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining , 1985 .