Analytic second derivatives for general coupled-cluster and configuration-interaction models.

Analytic second derivatives of energy for general coupled-cluster (CC) and configuration-interaction (CI) methods have been implemented using string-based many-body algorithms. Wave functions truncated at an arbitrary excitation level are considered. The presented method is applied to the calculation of CC and CI harmonic frequencies and nuclear magnetic resonance chemical shifts up to the full CI level for some selected systems. The present benchmarks underline the importance of higher excitations in high-accuracy calculations.

[1]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[2]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[3]  S. Epstein GAUGE INVARIANCE OF THE HARTREE-FOCK APPROXIMATION , 1965 .

[4]  R. Bartlett,et al.  Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD+T(CCSD), CCSD(T),and QCISD(T) , 1992 .

[5]  Hans Lischka,et al.  A general multireference configuration interaction gradient program , 1992 .

[6]  Ron Shepard,et al.  Geometrical energy derivative evaluation with MRCI wave functions , 1987 .

[7]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[8]  J. Gauss,et al.  Full configuration-interaction and coupled-cluster calculations of the indirect spin–spin coupling constant of BH , 2003 .

[9]  H. Schaefer,et al.  Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions , 1982 .

[10]  Jan M. L. Martin SPECTROSCOPIC QUALITY AB INITIO POTENTIAL CURVES FOR CH, NH, OH AND HF. A CONVERGENCE STUDY , 1998 .

[11]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[12]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[13]  M. Rui,et al.  Full-CI calculation of imaginary frequency-dependent dipole-quadrupole polarizabilities of ground state LiH and the C7 dispersion coefficients of LiH-LiH , 2000 .

[14]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[15]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[16]  Mihály Kállay,et al.  Computing coupled-cluster wave functions with arbitrary excitations , 2000 .

[17]  R. Harrison,et al.  Analytic MBPT(2) second derivatives , 1986 .

[18]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[19]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[20]  A. Dalgarno,et al.  A perturbation calculation of properties of the helium iso-electronic sequence , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[22]  S. Langhoff,et al.  Theoretical studies of the potential surface for the F+H2→HF+H reaction , 1988 .

[23]  J. Olsen,et al.  Full configuration interaction benchmark calculations of first-order one-electron properties of BH and HF , 1999 .

[24]  Jeppe Olsen,et al.  Excitation energies, transition moments and dynamic polarizabilities for CH+. A comparison of multiconfigurational linear response and full configuration interaction calculations , 1989 .

[25]  J. Olsen,et al.  Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory , 1996 .

[26]  Trygve Helgaker,et al.  Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals , 1994 .

[27]  Marcel Nooijen,et al.  Towards a general multireference coupled cluster method: automated implementation of open-shell CCSD method for doublet states , 2001 .

[28]  J. Gauss,et al.  Analytic CCSD(T) second derivatives , 1997 .

[29]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[30]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[31]  J. Gauss,et al.  Implementation of analytical energy gradients at third- and fourth-order Møller-Plesset perturbation theory , 1987 .

[32]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[33]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[34]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[35]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[36]  Jeppe Olsen,et al.  Full configuration interaction benchmarking of coupled-cluster models for the lowest singlet energy surfaces of N2 , 2000 .

[37]  Stefano Evangelisti,et al.  A vector and parallel full configuration interaction algorithm , 1993 .

[38]  Timothy J. Lee,et al.  An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2 , 1991 .

[39]  P. Szalay,et al.  Analytic energy derivatives for coupled‐cluster methods describing excited states: General formulas and comparison of computational costs , 1995 .

[40]  Thomas Müller,et al.  High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .

[41]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[42]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .

[43]  H. Schaefer,et al.  Analytic energy second derivatives for general correlated wavefunctions, including a solution of the first-order coupled-perturbed configuration-interaction equations , 1983 .

[44]  Jan M. L. Martin,et al.  TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY , 1999, physics/9904038.

[45]  J. Gauss,et al.  Electron-correlated approaches for the calculation of nmr chemical shifts , 2003 .

[46]  C. Bauschlicher,et al.  Full CI studies of the collinear transition state for the reaction F+H2→HF+H , 1987 .

[47]  H. Schaefer,et al.  The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects , 1986 .

[48]  R. Bartlett,et al.  Coupled‐cluster open‐shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations , 1991 .

[49]  Trygve Helgaker,et al.  Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications , 1990 .

[50]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[51]  J. Gauss,et al.  Analytic first and second derivatives for the CCSDT-n (n = 1-3) models : a first step towards the efficient calculation of ccsdt properties , 2000 .

[52]  Keiji Morokuma,et al.  Energy gradient in a multi-configurational SCF formalism and its application to geometry optimization of trimethylene diradicals , 1979 .

[53]  J. Arponen,et al.  Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems , 1983 .

[54]  H. F. Hameka On the nuclear magnetic shielding in the hydrogen molecule , 1958 .

[55]  John F. Stanton,et al.  The accurate determination of molecular equilibrium structures , 2001 .

[56]  J. Gauss,et al.  Analytical differentiation of the energy contribution due to triple excitations in fourth-order Møller-Plesset perturbation theory , 1988 .

[57]  J. Gauss GIAO-MBPT(3) and GIAO-SDQ-MBPT(4) calculations of nuclear magnetic shielding constants , 1994 .

[58]  J. Gauss,et al.  On the convergence of MBPT and CC nuclear magnetic shielding constants of BH toward the full CI limit , 1995 .

[59]  J. Gauss Analytic second derivatives for the full coupled-cluster singles, doubles, and triples model: Nuclear magnetic shielding constants for BH, HF, CO, N2, N2O, and O3 , 2002 .

[60]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[61]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[62]  John F. Stanton,et al.  Analytic second derivatives in high-order many-body perturbation and coupled-cluster theories: Computational considerations and applications , 2000 .

[63]  H. F. King,et al.  Analytical force constants for MCSCF wave functions , 1983 .

[64]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[65]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[66]  Analytical MBPT(4) gradients , 1988 .

[67]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[68]  B. C. Garrett,et al.  Nuclear‐motion corrections to Born–Oppenheimer barrier heights for chemical reactions , 1985 .

[69]  Rodney J. Bartlett,et al.  Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions , 1996 .

[70]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[71]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[72]  J. Bearden,et al.  Atomic energy levels , 1965 .

[73]  H. Schaefer,et al.  Analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces. A method for open-shell molecular wave functions , 1981 .

[74]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[75]  J. Gauss,et al.  Analytic gradients for the coupled-cluster singles, doubles, and triples (CCSDT) model , 2002 .

[76]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[77]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[78]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[79]  So Hirata,et al.  High-order coupled-cluster calculations through connected octuple excitations , 2000 .

[80]  G. Scuseria A coupled cluster study of the classical barrier height of the F+H2→FH+H reaction , 1991 .

[81]  J. Olsen,et al.  Comparison of full-configuration interaction and coupled-cluster harmonic and fundamental frequencies for BH and HF , 2001 .

[82]  Paul L. Houston,et al.  The temperature dependence of absolute rate constants for the F+H2 and F+D2 reactions , 1980 .

[83]  Jan M. L. Martin BENCHMARK AB INITIO POTENTIAL CURVES FOR THE LIGHT DIATOMIC HYDRIDES. UNUSUALLY LARGE NONADIABATIC EFFECTS IN BEH AND BH , 1998 .

[84]  J. Bott,et al.  Absolute rate coefficients for F+H2 and F+D2 at T=295–765 K. , 1979 .

[85]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[86]  Gillian C. Lynch,et al.  A more accurate potential energy surface and quantum mechanical cross section calculations for the F+ H2 reaction , 1993 .

[87]  Matthew L. Leininger,et al.  Benchmark configuration interaction spectroscopic constants for X 1Σg+ C2 and X 1Σ+ CN+ , 1998 .

[88]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[89]  H. Schaefer,et al.  Analytic energy second derivatives for general MCSCF wave functions , 1984 .

[90]  G. Scuseria,et al.  Analytic evaluation of energy gradients for the single, double and linearized triple excitation coupled-cluster CCSDT-1 wavefunction: Theory and applications , 1988 .

[91]  B. C. Garrett,et al.  Use of scaled external correlation, a double many-body expansion, and variational transition state theory to calibrate a potential energy surface for FH2 , 1991 .

[92]  J. Gauss,et al.  Accurate coupled cluster reaction enthalpies and activation energies for X+H2→XH+H (X=F, OH, NH2, and CH3) , 1993 .

[93]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[94]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .

[95]  Antara Dutta,et al.  Full configuration interaction potential energy curves for breaking bonds to hydrogen: An assessment of single-reference correlation methods , 2003 .

[96]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[97]  Josef Paldus,et al.  Vectorizable approach to molecular CI problems using determinantal basis , 1989 .

[98]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[99]  Marcel Nooijen,et al.  Brueckner based generalized coupled cluster theory: Implicit inclusion of higher excitation effects , 2000 .

[100]  R. Bartlett,et al.  Third‐order MBPT gradients , 1985 .

[101]  Rodney J. Bartlett,et al.  Theory and application of MBPT(3) gradients: The density approach , 1987 .

[102]  J. Gauss,et al.  Analytic UHF-CCSD(T) second derivatives: implementation and application to the calculation of the vibration-rotation interaction constants of NCO and NCS , 1998 .

[103]  Mihály Kállay,et al.  On the convergence of the coupled-cluster sequence: The H8 model , 2001 .

[104]  Lauri Halonen,et al.  Vibrational energy levels for symmetric and asymmetric isotopomers of ammonia with an exact kinetic energy operator and new potential energy surfaces , 2003 .

[105]  J. Olsen,et al.  Coupled-cluster connected-quadruples corrections to atomization energies , 2003 .

[106]  John F. Stanton,et al.  The ACES II program system , 1992 .

[107]  C. David Sherrill,et al.  A comparison of polarized double-zeta basis sets and natural orbitals for full configuration interaction benchmarks , 2003 .

[108]  H. Koch,et al.  Analytical calculation of full configuration interaction response properties: Application to Be , 1991 .

[109]  J. Olsen,et al.  A general coupled cluster study of the N2 molecule , 2001 .

[110]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[111]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[112]  R. Bartlett,et al.  Analytical gradient evaluation in coupled-cluster theory , 1985 .

[113]  Hans-Joachim Werner,et al.  An accurate multireference configuration interaction calculation of the potential energy surface for the F+H2→HF+H reaction , 1996 .

[114]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[115]  R. Bartlett Recent advances in coupled-cluster methods , 1997 .

[116]  Rodney J. Bartlett,et al.  Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis , 1995 .

[117]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[118]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[119]  Henry F. Schaefer,et al.  In pursuit of the ab initio limit for conformational energy prototypes , 1998 .

[120]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .