Phase Transitions in the Computational Complexity of “Elementary” Cellular Automata
暂无分享,去创建一个
[1] S. Mertens. Phase Transition in the Number Partitioning Problem , 1998, cond-mat/9807077.
[2] Rémi Monasson,et al. Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.
[3] Christopher G. Langton,et al. Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .
[4] N. Boccara,et al. Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[5] H. Gutowitz. A hierarchical classification of cellular automata , 1991 .
[6] Vladimir Privman,et al. Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .
[7] Hava T. Siegelmann,et al. Computational Complexity for Continuous Time Dynamics , 1999 .
[8] Erica Jen. Enumeration of Preimages in Cellular Automata , 1989, Complex Syst..
[9] Burton Voorhees,et al. Predecessors of cellular automata states, III.: Garden of Eden classification of cellular automata , 1994 .
[10] S. Wolfram. Computation theory of cellular automata , 1984 .
[11] John G. Zabolitzky,et al. Critical properties of Rule 22 elementary cellular automata , 1988 .
[12] K. Culík,et al. Computation theoretic aspects of cellular automata , 1990 .
[13] Peter Grassberger,et al. Long-range effects in an elementary cellular automaton , 1986 .
[14] Howard Gutowitz,et al. The topological skeleton of cellular automaton dynamics , 1997 .
[15] S. Wolfram. Statistical mechanics of cellular automata , 1983 .
[16] Andrew Wuensche,et al. Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1998, Complex..
[17] Burton Voorhees. Predecessors of cellular automata states: I. Additive automata , 1993 .
[18] John J. Hopfield,et al. Neural networks and physical systems with emergent collective computational abilities , 1999 .
[19] Hava T. Siegelmann,et al. Computational complexity for continuous-time dynamics , 2000, SPIE Optics + Photonics.