Chemical Chaos: From Hints to Confirmation

1. Introduction The term chaotic, as it is now widely used, describes nonperiodic behavior that arises from the nonlinear nature of deterministic systems, not noisy behavior arising from random driving forces.'s2 Recent experiments on diverse nonlinear systems, including fluid flows and nonlinear electrical circuits, have revealed chaotic dynamics similar to that found in theoretical analyses. The intrinsically nonlinear properties of chemical kinetics suggest the possibility of chaos in

[1]  O. Rossler,et al.  Chaos in the Zhabotinskii reaction , 1978, Nature.

[2]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[3]  J. Ringland,et al.  One-dimensional behavior in a model of the Belousov-Zhabotinskii reaction , 1984 .

[4]  F. Argoul,et al.  Quasiperiodicity in chemistry: an experimental path in the neighbourhood of a codimension-two bifurcation , 1985 .

[5]  Maselko,et al.  Comment on "Renormalization, unstable manifolds, and the fractal structure of mode locking" , 1985, Physical review letters.

[6]  H. Swinney,et al.  Alternating periodic and chaotic regimes in a chemical reaction — Experiment and theory , 1981 .

[7]  H. Swinney,et al.  Observation of a strange attractor , 1983 .

[8]  H. Swinney,et al.  Effect of trace impurities on a bifurcation structure in the Belousov-Zhabotinskii reaction and preparation of high-purity malonic acid , 1987 .

[9]  A. Arneodo,et al.  From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. II. Modeling and theory , 1987 .

[10]  H. Swinney,et al.  Universality, multiplicity, and the effect of iron impurities in the Belousov–Zhabotinskii reaction , 1987 .

[11]  Dwight Barkley,et al.  Observations of a torus in a model of the Belousov–Zhabotinskii reaction , 1987 .

[12]  A. Arneodo,et al.  The periodic-chaotic sequences in chemical reactions: A scenario close to homoclinic conditions? , 1985 .

[13]  Grégoire Nicolis,et al.  Nonequilibrium dynamics in chemical systems: A brief account , 1985 .

[14]  R. M. Noyes,et al.  Mechanistic details of the Belousov–Zhabotinskii oscillations , 1975 .

[15]  Richard M. Noyes,et al.  A discrepancy between experimental and computational evidence for chemical chaos , 1982 .

[16]  Quasiperiodicity in Chemical Dynamics , 1984 .

[17]  David Ruelle,et al.  SOME COMMENTS ON CHEMICAL OSCILLATIONS , 1973 .

[18]  Random mixed modes due to fluctuations in the Belousov-Zhabotinskii reaction , 1984 .

[19]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[20]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[21]  J. L. Hudson,et al.  Chaos in the Belousov-Zhabotinskii reaction , 1981 .

[22]  Françoise Argoul,et al.  From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. I. Experiment , 1987 .

[23]  J. Rinzel,et al.  One variable map prediction of Belousov–Zhabotinskii mixed mode oscillations , 1984 .

[24]  J. L. Hudson,et al.  An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction , 1979 .

[25]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[26]  H. Nagashima Chaotic States in the Belousov-Zhabotinsky Reaction , 1980 .

[27]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[28]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[29]  Y. Pomeau,et al.  Intermittent behaviour in the Belousov-Zhabotinsky reaction , 1981 .

[30]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[31]  John L. Hudson,et al.  Experimental evidence of chaotic states in the Belousov–Zhabotinskii reaction , 1977 .

[32]  Françoise Argoul,et al.  Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction , 1987 .

[33]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[34]  A. Wolf,et al.  One-Dimensional Dynamics in a Multicomponent Chemical Reaction , 1982 .

[35]  C. Vidal,et al.  Bifurcations en cascade conduisant la turbulence dans la raction de Belousov-Zhabotinsky , 1982 .

[36]  P. Gray,et al.  Sustained oscillations and other exotic patterns of behavior in isothermal reactions , 1985 .

[37]  R. M. Noyes,et al.  Oscillations in chemical systems. 18. Mechanisms of chemical oscillators: conceptual bases , 1977 .

[38]  H. Swinney,et al.  Complex Periodic and Chaotic Behavior in the Belousov-Zhabotinskii Reaction , 1984 .

[39]  Kenneth Showalter,et al.  A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system , 1978 .

[40]  H. Swinney,et al.  Experimental observations of complex dynamics in a chemical reaction , 1982 .

[41]  J. Roux,et al.  EXPERIMENTAL STUDY OF THE TRANSITION TO TURBULENCE IN THE BELOUSOV‐ZHABOTINSKY REACTION , 1980 .