Stereoselektive Alkylierung mit sichtbarem Licht durch Kombination von heterogener Photokatalyse mit Organokatalyse

Eine gute Mischung: Heterogene anorganische Halbleiter und chirale Organokatalysatoren bilden ein gutes Team in der stereoselektiven photokatalytischen Knupfung von Kohlenstoff-Kohlenstoff Bindungen. Allerdings sollte die Bindung zwischen organischem und anorganischem Katalysator nicht zu eng sein: Die kovalente Immobilisierung auf dem heterogenen Substrat desaktiviert den Katalysator.

[1]  H. Kisch,et al.  Synthesen durch Halbleiter-Photokatalyse: Solare Chemie , 2001 .

[2]  Jagan M. R. Narayanam,et al.  Visible-light-mediated conversion of alcohols to halides. , 2011, Nature chemistry.

[3]  C. Yeung,et al.  Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. , 2011, Chemical reviews.

[4]  Hye‐Young Jang,et al.  Green organophotocatalysis. TiO2-induced enantioselective α-oxyamination of aldehydes , 2011 .

[5]  Michael K. Seery,et al.  Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis , 2007 .

[6]  K. Zeitler,et al.  Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. , 2011, Angewandte Chemie.

[7]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[8]  M. Azuma,et al.  Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation , 2009 .

[9]  Choon‐Hong Tan,et al.  Dehydrogenative coupling reactions catalysed by Rose Bengal using visible light irradiation , 2011 .

[10]  Magnus Rueping,et al.  Photoredox catalyzed C-P bond forming reactions-visible light mediated oxidative phosphonylations of amines. , 2011, Chemical communications.

[11]  W. Schindler,et al.  Heterogeneous photocatalysis XV. Mechanistic aspects of cadmium sulfide-catalyzed photoaddition of olefins to Schiff bases , 1997 .

[12]  M. A. Ischay,et al.  Visible light photocatalysis as a greener approach to photochemical synthesis. , 2010, Nature chemistry.

[13]  P. Lianos,et al.  Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts , 2011 .

[14]  M. Klussmann,et al.  Oxidative coupling of amines and ketones by combined vanadium- and organocatalysis. , 2009, Chemical communications.

[15]  Lili Yan,et al.  Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting , 2011 .

[16]  C. Stephenson,et al.  Visible-light photoredox catalysis: aza-Henry reactions via C-H functionalization. , 2010, Journal of the American Chemical Society.

[17]  I. Guzei,et al.  Photocatalytic Reductive Cyclizations of Enones: Divergent Reactivity of Photogenerated Radical and Radical Anion Intermediates. , 2011, Chemical science.

[18]  K. Zeitler Photoredox catalysis with visible light. , 2009, Angewandte Chemie.

[19]  Zhigang Xie,et al.  Highly stable and porous cross-linked polymers for efficient photocatalysis. , 2011, Journal of the American Chemical Society.

[20]  D. Meissner,et al.  Semiconductor photocatalysis type B: synthesis of unsaturated α-amino esters from imines and olefins photocatalyzed by silica-supported cadmium sulfide , 2002, Photochemical and Photobiological Sciences.

[21]  Christopher K Prier,et al.  Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity , 2011, Science.

[22]  Y. Kamagata,et al.  Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[23]  B. König,et al.  Green-light photocatalytic reduction using dye-sensitized TiO2 and transition metal nanoparticles , 2010 .

[24]  Chao‐Jun Li Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. , 2009, Accounts of chemical research.

[25]  Pixu Li,et al.  Aerobic visible-light photoredox radical C-H functionalization: catalytic synthesis of 2-substituted benzothiazoles. , 2012, Organic letters.

[26]  Horst Kisch,et al.  Catalytic formation of hydrogen and carbon-carbon bonds on illuminated zinc sulfide generated from zinc dithiolenes , 1985 .

[27]  E. Carter,et al.  First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[28]  A. Pfitzner,et al.  Syntheses and Crystal Structures of PbSbO2Br, PbSbO2I, and PbBiO2Br , 2009 .

[29]  H. Kisch,et al.  Heterogene Photokatalyse, V. Cadmium‐Zinksulfide als Katalysatoren der Photodehydrodimerisierung von 2,5‐Dihydrofuran , 1988 .

[30]  H. Kisch,et al.  Support-controlled chemoselective olefin—imine addition photocatalyzed by cadmium sulfide on a zinc sulfide carrier , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[31]  Durga Prasad Hari,et al.  Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. , 2011, Organic letters.

[32]  H. Kisch Semiconductor Photocatalysis for Organic Synthesis , 2007 .

[33]  D. MacMillan,et al.  Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis , 2011, Nature.

[34]  M. A. Ischay,et al.  [2+2] cycloadditions by oxidative visible light photocatalysis. , 2010, Journal of the American Chemical Society.

[35]  Mark E. Scott,et al.  Enantioselective alpha-trifluoromethylation of aldehydes via photoredox organocatalysis. , 2009, Journal of the American Chemical Society.

[36]  Patrik Schmuki,et al.  TiO2‐Nanoröhren: Synthese und Anwendungen , 2011 .

[37]  C. Richter,et al.  Solar light induced carbon–carbon bond formation via TiO2 photocatalysis , 1998 .

[38]  Juana Du,et al.  Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. , 2009, Journal of the American Chemical Society.

[39]  Caroline J. Scheuermann Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. , 2010, Chemistry, an Asian journal.

[40]  D. MacMillan,et al.  Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. , 2010, Journal of the American Chemical Society.

[41]  W. Xiao,et al.  Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. , 2011, Angewandte Chemie.

[42]  S. Grimme,et al.  Catalytic enantioselective reactions driven by photoinduced electron transfer , 2005, Nature.

[43]  Magnus Rueping,et al.  Visible-light photoredox catalyzed oxidative Strecker reaction. , 2011, Chemical communications.

[44]  M. A. Ischay,et al.  Efficient visible light photocatalysis of [2+2] enone cycloadditions. , 2008, Journal of the American Chemical Society.

[45]  Laura Furst,et al.  Visible light-mediated intermolecular C-H functionalization of electron-rich heterocycles with malonates. , 2010, Organic letters.

[46]  W. Xiao,et al.  Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. , 2011, Chemical communications.

[47]  T. Yoon,et al.  [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. , 2011, Journal of the American Chemical Society.

[48]  Jinhua Ye,et al.  Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. , 2004, Angewandte Chemie.

[49]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[50]  J. Fierro,et al.  Water splitting on semiconductor catalysts under visible-light irradiation. , 2009, ChemSusChem.

[51]  Mingzhao Zhu,et al.  Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. , 2012, Angewandte Chemie.

[52]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[53]  S. Ardizzone,et al.  Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species , 2010 .

[54]  C. G. Fry,et al.  Radical cation Diels-Alder cycloadditions by visible light photocatalysis. , 2011, Journal of the American Chemical Society.

[55]  T. Bach,et al.  Chirality Control in Photochemical Reactions: Enantioselective Formation of Complex Photoproducts in Solution , 2008 .

[56]  M. Antonietti,et al.  Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. , 2011, Angewandte Chemie.

[57]  T. Poisson,et al.  Visible light mediated azomethine ylide formation-photoredox catalyzed [3+2] cycloadditions. , 2011, Chemical communications.

[58]  D. MacMillan,et al.  Photoredox catalysis: a mild, operationally simple approach to the synthesis of α-trifluoromethyl carbonyl compounds. , 2011, Angewandte Chemie.

[59]  Corey R J Stephenson,et al.  Visible light photoredox catalysis: applications in organic synthesis. , 2011, Chemical Society reviews.

[60]  Melanie S. Sanford,et al.  Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. , 2011, Journal of the American Chemical Society.

[61]  David A. Nicewicz,et al.  Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes , 2008, Science.

[62]  Markus Antonietti,et al.  mpg-C(3)N(4)-Catalyzed selective oxidation of alcohols using O(2) and visible light. , 2010, Journal of the American Chemical Society.

[63]  H. Cachet,et al.  Influence of geometric and electronic characteristics of TiO2 electrodes with nanotubular array on their photocatalytic efficiencies , 2011 .

[64]  D. Chatterjee,et al.  Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO(2) semiconductor photocatalyst. , 2008, Journal of hazardous materials.

[65]  G. Pandey,et al.  Design of a photosystem to harvest visible-light into electrons: Photosensitised one electron redox reactions in organic synthesis , 1996 .

[66]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[67]  K. Jørgensen,et al.  Organocatalysis--after the gold rush. , 2009, Chemical Society reviews.

[68]  F. Teplý Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots , 2011 .

[69]  Ruiqin Q. Zhang,et al.  Splitting Water on Metal Oxide Surfaces , 2011 .

[70]  K. Loh,et al.  Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light , 2011 .

[71]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[72]  Carlos Vila,et al.  Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. , 2011, Chemical communications.

[73]  Megan A. Cismesia,et al.  Visible Light Photocatalysis of Radical Anion Hetero-Diels-Alder Cycloadditions. , 2011, Tetrahedron.

[74]  Kirsten Zeitler Photoredoxkatalyse mit sichtbarem Licht , 2009 .

[75]  B. König,et al.  Metallfreie kooperative asymmetrische Organophotoredoxkatalyse mit sichtbarem Licht , 2011 .