Phenotypic and genotypic characterization of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from burn patients

[1]  A. Salari,et al.  An investigation of risk factors of in-hospital death due to COVID-19: a case-control study in Rasht, Iran , 2021, Irish Journal of Medical Science (1971 -).

[2]  Fu-Der Wang,et al.  Trends in microbial profile of burn patients following an event of dust explosion at a tertiary medical center , 2020, BMC Infectious Diseases.

[3]  A. A. Elshamy,et al.  A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options , 2020, Future science OA.

[4]  R. Gothalwal,et al.  Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review , 2019, Genes & diseases.

[5]  Charlotte K. Colenso,et al.  β-Lactamases and β-Lactamase Inhibitors in the 21st Century , 2019, Journal of molecular biology.

[6]  M. Gholami,et al.  High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium; as a serious threat in hospitals. , 2020, Infectious disorders drug targets.

[7]  G. Dougan,et al.  Emergence of dominant multidrug-resistant bacterial clades: Lessons from history and whole-genome sequencing , 2018, Proceedings of the National Academy of Sciences.

[8]  L. Raka,et al.  Molecular epidemiology of Pseudomonas aeruginosa in University Clinical Center of Kosovo , 2018, Infection and drug resistance.

[9]  S. Schwarz,et al.  Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine , 2017, Veterinary dermatology.

[10]  Robert A Bonomo,et al.  B1-Metallo-β-Lactamases: Where Do We Stand? , 2016, Current drug targets.

[11]  Nazari Shahram,et al.  NANO POLYAMIDOAMINE-G7 DENDRIMER SYNTHESIS AND ASSESSMENT THE ANTIBACTERIAL EFFECT IN VITRO , 2016 .

[12]  E. Habibi,et al.  Detection of vim- and ipm-type metallo-beta-lactamases in Pseudomonas aeruginosa clinical isolates. , 2012, Archives of Iranian medicine.

[13]  F. Shahcheraghi,et al.  Identification and genetic characterization of metallo-beta-lactamase-producing strains of Pseudomonas aeruginosa in Tehran, Iran. , 2010, The new microbiologica.

[14]  Bahar,et al.  Phenotypic Detection Of Metallo-beta-lactamase Producing Pseudomonas aeruginosa Strains Isolated From Burned Patients , 2008 .

[15]  A. Khosravi,et al.  Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. , 2008, Diagnostic microbiology and infectious disease.

[16]  M. Kalani,et al.  Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. , 2006, Burns : journal of the International Society for Burn Injuries.

[17]  D. Church,et al.  Detection of Pseudomonas aeruginosa Producing Metallo-β-Lactamases in a Large Centralized Laboratory , 2005, Journal of Clinical Microbiology.

[18]  H. Shin,et al.  Imipenem-EDTA Disk Method for Differentiation of Metallo-β-Lactamase-Producing Clinical Isolates of Pseudomonas spp. and Acinetobacter spp , 2002, Journal of Clinical Microbiology.