Convergence of the k-Means Minimization Problem using Γ-Convergence
暂无分享,去创建一个
Florian Theil | Matthew Thorpe | Adam M. Johansen | Neil Cade | A. M. Johansen | F. Theil | M. Thorpe | Neil Cade
[1] T. Laloë,et al. L1-Quantization and clustering in Banach spaces , 2010 .
[2] R. A. Gaskins,et al. Nonparametric roughness penalties for probability densities , 2022 .
[3] Jüri Lember,et al. On minimizing sequences for k-centres , 2003, J. Approx. Theory.
[4] F. O’Sullivan. A Statistical Perspective on Ill-posed Inverse Problems , 1986 .
[5] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[6] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[7] P. Chou. The distortion of vector quantizers trained on n vectors decreases to the optimum as O/sub p/(1/n) , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.
[8] András Antos. Improved Minimax Bounds on the Test and Training Distortion of Empirically Designed Vector Quantizers , 2005, COLT.
[9] Kellen Petersen August. Real Analysis , 2009 .
[10] D. Pollard. A Central Limit Theorem for $k$-Means Clustering , 1982 .
[11] Andrea Braides. Γ-convergence for beginners , 2002 .
[12] Linda H. Zhao. Bayesian aspects of some nonparametric problems , 2000 .
[13] L. Brown,et al. Asymptotic equivalence of nonparametric regression and white noise , 1996 .
[14] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[15] Tamás Linder,et al. The minimax distortion redundancy in empirical quantizer design , 1997, Proceedings of IEEE International Symposium on Information Theory.
[16] Lorenzo Rosasco,et al. Learning Manifolds with K-Means and K-Flats , 2012, NIPS.
[17] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[18] R. Eubank. Nonparametric Regression and Spline Smoothing , 1999 .
[19] Saad T. Bakir,et al. Nonparametric Regression and Spline Smoothing , 2000, Technometrics.
[20] Juan Antonio Cuesta-Albertos,et al. Impartial trimmed k-means for functional data , 2007, Comput. Stat. Data Anal..
[21] Luc Devroye,et al. On the Performance of Clustering in Hilbert Spaces , 2008, IEEE Transactions on Information Theory.
[22] Stig Larsson,et al. Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.
[23] Tamás Linder,et al. Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding , 1994, IEEE Trans. Inf. Theory.
[24] Thaddeus Tarpey,et al. Clustering Functional Data , 2003, J. Classif..
[25] E. Feinberg,et al. Fatou's Lemma for Weakly Converging Probabilities , 2012, 1206.4073.
[26] J. Hartigan. Asymptotic Distributions for Clustering Criteria , 1978 .
[27] Karin Rothschild,et al. A Course In Functional Analysis , 2016 .
[28] D. Pollard. Strong Consistency of $K$-Means Clustering , 1981 .
[29] P. Hall,et al. Theory for penalised spline regression , 2005 .
[30] J. A. Cuesta,et al. The strong law of large numbers for k-means and best possible nets of Banach valued random variables , 1988 .
[31] Shai Ben-David,et al. Stability of k -Means Clustering , 2007, COLT.