A partial linearization method for the traffic assignment problem

This paper presents a new solution technique for the traffic assignment problem. The approach is based on an iteratively improved nonlinear and separable approximation of the originally nonseparabl ...

[1]  S. Zenios,et al.  Relaxation techniques for strictly convex network problems , 1986 .

[2]  A. C. Pigou Economics of welfare , 1920 .

[3]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[4]  G. Meyer Accelerated Frank–Wolfe Algorithms , 1974 .

[5]  Balder Von Hohenbalken,et al.  Simplicial decomposition in nonlinear programming algorithms , 1977, Math. Program..

[6]  Andrés Weintraub,et al.  An algorithm for the traffic assignment problem , 1980, Networks.

[7]  Athanasios Migdalas,et al.  An algorithm for nonlinear programs over cartesian product sets , 1990 .

[8]  John M. Mulvey,et al.  A distributed algorithm for convex network optimization problems , 1988, Parallel Comput..

[9]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[10]  M. Patriksson Partial linearization methods in nonlinear programming , 1993 .

[11]  Stella C. Dafermos,et al.  Traffic assignment problem for a general network , 1969 .

[12]  Leon S. Lasdon,et al.  A Reduced Gradient Algorithm for Nonlinear Network Problems , 1983, TOMS.

[13]  M. Patriksson A unified description of iterative algorithms for traffic equilibria , 1993 .

[14]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[15]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[16]  N. F. Stewart,et al.  Bregman's balancing method , 1981 .

[17]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[18]  R. V. Helgason,et al.  Algorithms for network programming , 1980 .

[19]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[20]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[21]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[22]  R. Asmuth Traffic network equilibria , 1978 .

[23]  J. A. Ventura,et al.  Restricted simplicial decomposition: computation and extensions , 1987 .

[24]  D. Hearn,et al.  Simplical decomposition of the asymmetric traffic assignment problem , 1984 .

[25]  D. Bertsekas,et al.  Relaxation methods for network flow problems with convex arc costs , 1987 .

[26]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[27]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[28]  Michael Patriksson,et al.  The Traffic Assignment problem , 1994 .

[29]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[30]  Balder Von Hohenbalken,et al.  A finite algorithm to maximize certain pseudoconcave functions on polytopes , 1975, Math. Program..

[31]  E. R. Petersen A Primal-Dual Traffic Assignment Algorithm , 1975 .

[32]  J. Wardrop ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. , 1952 .

[33]  D. Hearn,et al.  CONVEX PROGRAMMING FORMULATIONS OF THE ASYMMETRIC TRAFFIC ASSIGNMENT PROBLEM , 1984 .

[34]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[35]  Larry J. LeBlanc,et al.  AN EFFICIENT APPROACH TO SOLVING THE ROAD NETWORK EQUILIBRIUM TRAFFIC ASSIGNMENT PROBLEM. IN: THE AUTOMOBILE , 1975 .

[36]  D. Bertsekas,et al.  Distributed asynchronous relaxation methods for convex network flow problems , 1987 .

[37]  H. Z. Aashtiani The multi-modal traffic assignment problem. , 1979 .

[38]  Norman D. Curet On the dual coordinate ascent approach for nonlinear networks , 1993, Comput. Oper. Res..