Sputtering of compound semiconductor surfaces. I. Ion-solid interactions and sputtering yields

Abstract Several phenomena occur on the surface of a solid when being bombarded by energetic ions. A short general review is given of the major ion-solid interactions on compound semiconductor surfaces. An in-depth discussion is presented of the total sputtering yields of component semiconductors. For this discussion, GaAs is assumed to be the prototype compound semiconductor because most experimental measurements exist for GaAs. To exclude any chemical effects in the sputter yields, only the total sputtering yield data for argon ion bombardment of GaAs are compared with the predictions of the major sputtering theories, with particular attention to the Sigmund theory for linear cascade sputtering. Different proposals of each of the parameters in this theory are presented and compared with the GaAs data. These parameters are the surface binding energy, the nuclear stopping power, and the factor α, which represents the fraction of energy available for sputtering. Use of the different parameters results in a...

[1]  H. H. Andersen,et al.  Sputtering yield measurements , 1981 .

[2]  J. Tsai,et al.  The mechanism of simultaneous implantation and sputtering by high energy oxygen ions during secondary ion mass spectrometry (SIMS) analysis , 1974 .

[3]  Y. Yamamura Threshold energies of light-ion sputtering and heavy-ion sputtering as a function of angle of incidence , 1984 .

[4]  W. Eckstein,et al.  Sputtering of low- Z materials , 1991 .

[5]  D. Onderdelinden SINGLE-CRYSTAL SPUTTERING INCLUDING THE CHANNELING PHENOMENON. , 1968 .

[6]  M. Seah,et al.  Pure element sputtering yields using 500–1000 eV argon ions , 1981 .

[7]  H. Roosendaal Sputtering yields of single crystalline targets , 1981 .

[8]  W. Mader,et al.  Determination of the atomic mixing layer in sputter profiling of Ta/Si multilayers by TEM and AES , 1990 .

[9]  W. D. Wilson,et al.  Calculations of nuclear stopping, ranges, and straggling in the low-energy region , 1977 .

[10]  R. Kelly On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides , 1980 .

[11]  G. Was Ion beam modification of metals: Compositional and microstructural changes , 1989 .

[12]  D. Onderdelinden THE INFLUENCE OF CHANNELING ON Cu SINGLE‐CRYSTAL SPUTTERING , 1966 .

[13]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[14]  Wu,et al.  Measurement of the binding energy of kink-site atoms of metals and alloys. , 1991, Physical review. B, Condensed matter.

[15]  R. Pȩdrys,et al.  Bombardment-induced photon emission from GaAs as a function of target temperature , 1978 .

[16]  M. Szymoński,et al.  The sputtering of gallium arsenide at elevated temperatures , 1979 .

[17]  J. Berg,et al.  Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials , 1986 .

[18]  P. Zalm,et al.  On the pole of physical sputtering in reactive ion beam etching , 1983 .

[19]  W. Eckstein,et al.  Sputtering and reflection from lithium, gallium and indium , 1991 .

[20]  G. Destefanis,et al.  Electrical doping of HgCdTe by ion implantation and heat treatment , 1988 .

[21]  K. Wittmaack,et al.  Model calculation of ion collection in the presence of sputtering , 1976 .

[22]  J. Malherbe,et al.  Deep radiation damage in copper after ion implantation , 1985 .

[23]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[24]  R. Kelly,et al.  The Theory of the Preferential Sputtering of Alloys, Including the Role of Gibbsian Segregation , 1986 .

[25]  R. S. Nelson,et al.  Evidence for heated spikes in bombarded gold from the energy spectrum of atoms ejected by 43 kev a+and xe+ions , 1962 .

[26]  J. Schou,et al.  Sputtering yields and energy distributions from nonoverlapping subspikes in ion bombarded volatile solids , 1992 .

[27]  J. D. Christian Strength of Chemical Bonds , 1973 .

[28]  T. Tsong Energetics of surface atomic processes , 1990 .

[29]  W. Gries Preparation and certification of ion-implanted reference materials: A critical review (Technical Report) , 1992 .

[30]  B. Unvala,et al.  Sputtering of silicon and gallium arsenide with medium energy intense ion beams of argon and xenon , 1975 .

[31]  J. Biersack Depth distributions of implanted atoms under the influence of surface erosion and diffusion , 1973 .

[32]  J. Rabalais,et al.  Ion Induced Surface Alterations Due to Electronic Charge Exchange and Chemical Reactions , 1982 .

[33]  C. Steinbrüchel A simple formula for low-energy sputtering yields , 1985 .

[34]  P. Sigmund Energy density and time constant of heavy‐ion‐induced elastic‐collision spikes in solids , 1974 .

[35]  W. Johnson,et al.  Correlation between the cohesive energy and the onset of radiation-enhanced diffusion in ion mixing , 1986 .

[36]  U. Kaiser,et al.  Quasisimultaneous SIMS, AES, XPS, and TDMS study of preferential sputtering, diffusion, and mercury evaporation in CdxHg1−xTe , 1981 .

[37]  Yang-Tse Cheng Thermodynamic and fractal geometric aspects of ion-solid interactions , 1990 .

[38]  P. Siffert,et al.  Recoil implantation of antimony into silicon , 1981 .

[39]  W. Gries A formula for the secondary ion field fraction emitted through an energy window , 1975 .

[40]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[41]  N. Matsunami,et al.  Theoretical studies on an empirical formula for sputtering yield at normal incidence , 1983 .

[42]  N. Itoh,et al.  A semiempirical formula for the energy dependence of the sputtering yield , 1981 .

[43]  R. Juza,et al.  Untersuchungen über die Nitride von Cadmium, Gallium, Indium und Germanium. Metallamide und Metallnitride. VIII. Mitteilung , 1940 .

[44]  D. E. Harrison,et al.  Energy cost to sputter an atom from a surface in keV ion bombardment processes , 1987 .

[45]  G. Reynolds A model of the surface binding energy for fcc copper-nickel alloy , 1983 .

[46]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[47]  V. J. Lyons The Dissociation Pressure of ZnAs2 , 1959 .

[48]  W. Eckstein,et al.  Sputtering of tungsten and molybdenum , 1991 .

[49]  Monte Carlo Calculation of Depth Distribution of Implanted Ions and Sputtering Yield. Comparison for Some of the Interaction Potentials , 1989 .

[50]  J. Bohdansky A Universal Relation for the Sputtering Yield of Monatomic Solids at Normal Ion Incidence , 1984 .

[51]  Y. Yamamura A simple analysis of the angular dependence of light-ion sputtering , 1984 .

[52]  H. H. Andersen,et al.  Heavy‐ion sputtering yields of gold: Further evidence of nonlinear effects , 1975 .

[53]  S. Namba,et al.  High‐rate ion etching of GaAs and Si at low ion energy by using an electron beam excited plasma system , 1988 .

[54]  J. Roth,et al.  Physical and Chemical Sputtering of Multicomponent Solids , 1991 .

[55]  J. Brinkman Production of Atomic Displacements by High-Energy Particles , 1956 .

[56]  C. B. Cooper,et al.  Mass‐Spectrometric Study of Sputtering of Single Crystals of GaAs by Low‐Energy A Ions , 1967 .

[57]  G. K. Wehner,et al.  SPUTTERING THRESHOLDS AND DISPLACEMENT ENERGIES , 1960 .

[58]  B. Scherzer Development of surface topography due to gas ion implantation , 1983 .

[59]  A. Knudson,et al.  The Surface Behavior of a Binary Alloy During Production by Ion Implantation , 1981 .

[60]  J. Rabalais Scattering and Recoiling Spectrometry: An Ion's Eye View of Surface Structure , 1990, Science.

[61]  H. Prival A model of the ion sputtering process , 1978 .

[62]  S. Barnett,et al.  Mechanisms of epitaxial GaAs crystal growth by sputter deposition: Role of ion/surface interactions , 1983 .

[63]  S. Barnett,et al.  Growth of single crystal GaAs and metastable (GaSb)1−xGexAlloys by sputter deposition: Ion-surface interaction effects , 1982 .

[64]  Donald L. Smith,et al.  Physical sputtering model for fusion reactor first-wall materials , 1978 .

[65]  James F. Ziegler,et al.  Refined universal potentials in atomic collisions , 1982 .

[66]  J. Brinkman On the Nature of Radiation Damage in Metals , 1954 .

[67]  Yamamura Yasunori,et al.  Depth profiles and energy properties of big cluster impacts on amorphous targets , 1992 .

[68]  E. Hotston Threshold energies for sputtering , 1975 .

[69]  I. L. Singer,et al.  Abstract: Composition changes in GaAs due to low‐energy ion bombardment , 1978 .

[70]  Denis Weaire,et al.  The theory of the cohesive energies of solids , 1987 .

[71]  R. A. Barker,et al.  Surface composition and etching of III‐V semiconductors in Cl2 ion beams , 1982 .

[72]  J. Roth,et al.  Threshold energy for sputtering and its dependence on angle of incidence , 1993 .

[73]  H. H. Andersen The depth resolution of sputter profiling , 1979 .

[74]  G. V. Wyk,et al.  A formula for the calculation of the sputtering yield of polycrystalline materials , 1982 .

[75]  J. Werckmann,et al.  An XPS study of GaN thin films on GaAs , 1990 .

[76]  I. L. Singer,et al.  Surface composition changes in GaAs due to low-energy ion bombardment , 1981 .

[77]  Robert E. Lee Microfabrication by ion‐beam etching , 1979 .

[78]  G. Wehner CONTROLLED SPUTTERING OF METALS BY LOW-ENERGY Hg IONS , 1956 .

[79]  J. Rabalais,et al.  Atomic collisions in surface chemistry and film deposition , 1992 .

[80]  Computer simulations of atomic collisions in solids with special emphasis on sputtering , 1986 .

[81]  Y. Yamamura Contribution of anisotropic velocity distribution of recoil atoms to sputtering yields and angular distributions of sputtered atoms , 1981 .

[82]  D. P. Jackson Binding energies in cubic metal surfaces , 1973 .

[83]  G. Wehner,et al.  Temperature dependence of ejection patterns in Ge, Si, InSb, and InAs sputtering , 1964 .

[84]  Stephen J. Pearton,et al.  Ion milling damage in InP and GaAs , 1990 .

[85]  M. Robinson Theoretical aspects of monocrystal sputtering , 1981 .

[86]  E. Wolf,et al.  A simple model of the chemically assisted ion beam etching yield of GaAs with Cl2 at medium current densities , 1990 .

[87]  J. Sielanko,et al.  The influence of radiation damage on the sputtering yield of silicon , 1983 .

[88]  I. H. Wilson,et al.  On the variation of sputtering yield with angle of ion incidence , 1985 .

[89]  S. C. Ling,et al.  Argon implantation in GaAs: Damage and lattice site location analyses , 1983 .

[90]  P. Sigmund,et al.  Temperature-dependent sputtering of metals and insulators , 1984 .

[91]  Some of the current trends in the studies of sputtering , 1989 .

[92]  P. Sigmund Sputtering by ion bombardment theoretical concepts , 1981 .

[93]  R. B. Jacobs,et al.  Beta energy driven uniform deuterium--tritium ice layer in reactor-size cryogenic inertial fusion targets , 1988 .

[94]  W. Gries Ion Implantation in the Surface Analysis of Solid Materials , 1985 .

[95]  H. Casey,et al.  Dry processing of high resolution and high aspect ratio structures in GaAs-Al(x)Ga(1-x) As for integrated optics. , 1977, Applied optics.

[96]  S. B. Karmohapatro,et al.  Surface topography of Ar+ bombarded GaAs(100) at various temperatures , 1987 .

[97]  M. Cantagrel Comparison of the properties of different materials used as masks for ion‐beam etching , 1975 .

[98]  G. Maderlechner,et al.  The sputtering mechanism for low-energy light ions , 1979 .

[99]  M. W. Thompson Mechanisms of sputtering , 1979, Nature.

[100]  Wei-xi Chen,et al.  Ion beam etching of InGaAs, InP, GaAs, Si, and Ge , 1986 .

[101]  J. Roth,et al.  Low Energy Light Ion Sputtering of Metals and Carbides , 1980 .

[102]  J. Bohdansky,et al.  Few collisions approach for threshold sputtering , 1985 .

[103]  Peter Sigmund,et al.  Mechanisms and theory of physical sputtering by particle impact , 1987 .

[104]  H. Oechsner Untersuchungen zur Festkörperzerstäubung bei schiefwinkligem Ionenbeschuß polykristalliner Metalloberflächen im Energiebereich um 1 keV , 1973 .

[105]  T. Tsong,et al.  Measurement of the atomic site specific binding energy of surface atoms of metals and alloys , 1991 .

[106]  K. Mann,et al.  Mass Spectrometric Study of the Nonstoichiometric Vaporization of Cadmium Arsenide1 , 1964 .

[107]  D. Thompson Application of an extended linear cascade model to the sputtering of Ag, Au, and Pt by heavy atomic and molecular ions , 1981 .

[108]  D. Darbyshire,et al.  Ion-assisted processing of GaAs for optical devices , 1990 .

[109]  L. Coldren,et al.  Radical beam/ion beam etching of GaAs , 1988 .

[110]  I. L. Singer,et al.  Preferential sputtering from disordered GaAs , 1981 .

[111]  N. Itoh,et al.  A new empirical formula for the sputtering yield , 1982 .

[112]  V. J. Lyons,et al.  SOLID-VAPOR EQUILIBRIA FOR THE COMPOUNDS Cd3As2 AND CdAs2 , 1960 .

[113]  C. R. Helms,et al.  A statistical model of sputtering , 1979 .

[114]  M. Szymoński Elastic-collision spikes in sputtering of metals at normal and oblique incidence , 1984 .

[115]  B. Scherzer Bubbles, Blisters and Exfoliation , 1986 .

[116]  D. P. Jackson Surface ejection in single crystal sputtering , 1975 .

[117]  Recoil Implantation from Sb Thin Films under Ion Bombardment , 1989 .

[118]  J. Malherbe,et al.  Silicon ion bombardment of Sb/Si contacts , 1992 .

[119]  H. H. Andersen Sputtering from atomic-collision cascades , 1988 .

[120]  R. Kelly The surface binding energy in slow collisional sputtering , 1986 .

[121]  J. Krajniak,et al.  Slow-electron inelastic scattering effects in a tungsten crystal , 1990 .

[122]  The angular dependence of sputtering yields of Ge and Ag , 1992 .

[123]  New technique for dry etch damage assessment of semiconductors , 1993 .

[124]  S. Somekh,et al.  Introduction to ion and plasma etching , 1976 .

[125]  C. R. Helms,et al.  An elementary model of neutral and ion sputtering yields , 1981 .

[126]  Per G. Glöersen Ion Beam Etching , 1975, Atomic Layer Processing.

[127]  R. Kelly Thermal effects in sputtering , 1979 .

[128]  R. Colin,et al.  Thermodynamic Study of Germanium Monotelluride Using a Mass Spectrometer1 , 1964 .

[129]  P. Zalm Some useful yield estimates for ion beam sputtering and ion plating at low bombarding energies , 1984 .

[130]  A. Sagara,et al.  Compilation and evaluation of ion impact desorption cross-section , 1982 .

[131]  O. Wada Ar ion-beam etching characteristics and damage production in InP , 1984 .

[132]  C. B. Cooper,et al.  SPUTTERING YIELDS OF SEVERAL SEMICONDUCTING COMPOUNDS UNDER ARGON ION BOMBARDMENT , 1966 .

[133]  E. J. Zdanuk,et al.  The sputtering of compounds , 1964 .

[134]  H. Bay,et al.  Sputtering-yield studies on silicon and silver targets , 1973 .

[135]  H. Oechsner Sputtering—a review of some recent experimental and theoretical aspects , 1975 .

[136]  Osamu Wada,et al.  Ion‐Beam Etching of InP and Its Application to the Fabrication of High Radiance InGaAsP / InP Light Emitting Diodes , 1984 .

[137]  J. M. Whelan,et al.  Glow‐discharge optical spectroscopy for the analysis of thin films , 1973 .

[138]  J. R. Arthur Vapor pressures and phase equilibria in the GaAs system , 1967 .

[139]  J. Bohdansky,et al.  Light‐ion sputtering yields for molybdenum and gold at low energies , 1977 .

[140]  E. Friedland,et al.  Temperature dependence of damage ranges in some metals after argon implantation , 1990 .

[141]  S. B. Felch,et al.  A COMPARISON OF THREE TECHNIQUES FOR PROFILING ULTRASHALLOW P+-N JUNCTIONS , 1993 .

[142]  S. Namba,et al.  Effects of ion etching on the properties of GaAs. , 1978, Applied optics.

[143]  H. Pfleiderer,et al.  Implantation profiles modified by sputtering , 1973 .

[144]  U. Littmark,et al.  Primary recoil contribution to low energy light ion sputtering , 1982 .

[145]  W. Gries Radiation‐induced sample modification in surface analysis: InP as an extreme example , 1989 .

[146]  P. Zalm Ion-beam assisted etching of semiconductors , 1986 .

[147]  T. Yamashina,et al.  Measurement of erosion yields for a SiC surface on H+, D+ and Ar+ bombardment , 1978 .

[148]  R. Collins,et al.  The spatial distribution of ions implanted into solids subject to diffusion and surface sputtering , 1975 .

[149]  J. Bohdansky,et al.  Sputtering yields for light ions as a function of angle of incidence , 1979 .

[150]  Ion beam etching and surface characterization of indium phosphide , 1986 .

[151]  Stephen J. Pearton,et al.  Dry-etching techniques and chemistries for III–V semiconductors , 1991 .

[152]  G. S. Anderson Atom Ejection Studies for Sputtering of Semiconductors , 1966 .

[153]  M. Szymoński Sputtering mechanisms of compound solids , 1982 .

[154]  J. Lindhard,et al.  INFLUENCE OF CRYSTAL LATTICE ON MOTION OF ENERGETIC CHARGED PARTICLES. , 1965 .

[155]  J. Roth Sputtering of Limiter and Divertor Materials , 1990 .

[156]  P. Sigmund sputtering processes: collision cascades and spikes , 1977 .

[157]  D. E. Harrison,et al.  A summary of the theory of the preferential sputtering of alloys , 1985 .

[158]  J. Bohdansky,et al.  An analytical formula and important parameters for low‐energy ion sputtering , 1980 .

[159]  J. Melngailis,et al.  Focused ion beam induced deposition and ion milling as a function of angle of ion incidence , 1992 .

[160]  M. W. Thompson II. The energy spectrum of ejected atoms during the high energy sputtering of gold , 1968 .

[161]  P. Zalm,et al.  Surface processes in ion-induced etching , 1986 .

[162]  M. W. Thompson Physical mechanisms of sputtering , 1981 .

[163]  K. Gingerich,et al.  Vaporization of Aluminum Phosphide , 1968 .

[164]  Y. Yamamura,et al.  Computer studies on bombarding-angle dependence of threshold energy of sputtering yields , 1984 .

[165]  A model for blister exfoliation , 1983 .

[166]  W. Johnson,et al.  When is thermodynamics relevant to ion-induced atomic rearrangements in metals? , 1985 .

[167]  D. Thompson High density cascade effects , 1981 .

[168]  J. Farren,et al.  Sputtering of GaAs single crystals by 8-16 keV argon ions. , 1968, Talanta.

[169]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .

[170]  P. Zalm,et al.  Energy dependence of the sputtering yield of silicon bombarded with neon, argon, krypton, and xenon ions , 1983 .

[171]  C. R. Helms,et al.  Model of ion knock‐on mixing with application to Si–SiO2 interface studies , 1979 .

[172]  J. Bohdansky,et al.  Sputtering yields of graphite and carbides and their potential use as first wall materials , 1978 .

[173]  C. Stahle,et al.  Etching on polar (111) surfaces of CdTe crystals studied with Auger electron spectroscopy , 1987 .

[174]  Mark T. Robinson,et al.  Computer studies of the reflection of light ions from solids , 1976 .

[175]  R. Kopf,et al.  Sputtering processes in AlxGa1−xAs and the effects on post-ionization detection , 1992 .

[176]  G. Betz,et al.  Sputtering by particle bombardment , 1983 .

[177]  S. Namba,et al.  Ion beam assisted etching and deposition , 1990 .

[178]  W. Gries Quantitative ion implantation , 1976 .

[179]  D. Thompson,et al.  Nonlinear sputtering effects in thin metal films , 1979 .

[180]  B. Sundqvist,et al.  Electronic Sputtering: From Atomic Physics to Continuum Mechanics , 1992 .

[181]  N. Sirota Chapter 2 Heats of Formation and Temperatures and Heats of Fusion of Compounds AIII Bv , 1968 .

[182]  W. Gries Quantitative ion implantation: Theoretical aspects , 1979 .

[183]  R. Kelly An attempt to understand preferential sputtering , 1978 .

[184]  M. Geis,et al.  Low power ion-beam-assisted etching of indium phosphide , 1985 .

[185]  J. Malherbe,et al.  The activation energy of electrical conduction of ion beam mixed Sb/n-Si Schottky contacts , 1993 .