Antenna effects in truxene-bridged BODIPY triarylzinc(II)porphyrin dyads: evidence for a dual Dexter-Förster mechanism.

The antenna process from an energy donor (BODIPY; 4',4'-difluoro-1',3',5',7'-tetramethyl-4'-bora-3a',4a'-diaza-s-indacene) in its singlet state to two acceptors (two zinc(II) 5,15-p-tolyl-10-phenylporphyrin) bridged by a central truxene residue (5',5'',10',10'',15',15''-hexabutyltruxene), 5, has been analysed by means of comparison of the energy transfer rates with those of a structurally similar β-substituted BODIPY-(zinc(II) 5,10,15-p-tolyl-porphyrin), 6, where no conjugation is present between the donor and the two acceptors using the Förster resonance energy transfer (FRET) approximation. It is estimated that the energy transfer in operates mostly via a Dexter mechanism (>99%), and the remaining proceeds via a Förster mechanism (<1%). This information is useful for the design of future molecular devices aimed at harvesting light.

[1]  G. Brisard,et al.  Electronic communication across N-linked unconjugated polymers: important insight into the charge transfer processes of polyaniline. , 2014, Chemical communications.

[2]  S. Mathur,et al.  Boron dipyrrin-porphyrin conjugates , 2013 .

[3]  R. Ziessel,et al.  Ultrafast energy transfer in triptycene-grafted Bodipy scaffoldings. , 2013, Chemistry.

[4]  B. Röder,et al.  Formation and photoinduced processes of the host-guest complexes of a β-cyclodextrin-conjugated aza-BODIPY and tetrasulfonated porphyrins. , 2013, Chemical communications.

[5]  S. Baudron,et al.  Luminescent dipyrrin based metal complexes. , 2013, Dalton transactions.

[6]  F. D’Souza,et al.  A broad-band capturing and emitting molecular triad: synthesis and photochemistry. , 2013, Chemical communications.

[7]  P. Harvey,et al.  Shape-persistent poly-porphyrins assembled by a central truxene: synthesis, structure, and singlet energy transfer behaviors , 2013 .

[8]  U. Scherf,et al.  Excited State Characterization and Energy Transfer in Hyperbranched Polytruxenes and Polytruxene-block-Polythiophene Multiblock Copolymers , 2013 .

[9]  M. J. Leonardi,et al.  Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays. , 2012, Inorganic chemistry.

[10]  R. Ziessel,et al.  Photoinduced energy transfer processes in hybrid organic-inorganic multichromophoric arrays arranged on a truxene-based platform. , 2012, Dalton transactions.

[11]  D. Gryko,et al.  Synthesis of π-extended porphyrins via intramolecular oxidative coupling. , 2012, Chemical communications.

[12]  Hua Zhang,et al.  Star-Shaped Polycyclic Aromatic Hydrocarbons: Design and Synthesis of Molecules , 2012 .

[13]  Eric Wei-Guang Diau,et al.  Dual Functionality of BODIPY Chromophore in Porphyrin-Sensitized Nanocrystalline Solar Cells , 2012 .

[14]  K. Ohkubo,et al.  Synthesis and photodynamics of fluorescent blue BODIPY-porphyrin tweezers linked by triazole rings. , 2012, The journal of physical chemistry. A.

[15]  D. Guldi,et al.  Electron vs energy transfer in arrays featuring two Bodipy chromophores axially bound to a Sn(IV) porphyrin via a phenolate or benzoate bridge. , 2012, Inorganic chemistry.

[16]  P. Harvey,et al.  B,B-Diporphyrinbenzyloxy-BODIPY dyes: synthesis and antenna effect. , 2012, The Journal of organic chemistry.

[17]  Dae Won Cho,et al.  S2 emission from chemically modified BODIPYs. , 2012, Chemical communications.

[18]  P. Harvey,et al.  Organometallic multiads of zinc(II) porphyrins with interchromophoric cooperativity in S1 and T1 energy transfers. , 2012, Chemical communications.

[19]  U. Scherf,et al.  Dye‐Terminated, Hyperbranched Polytruxenes and Polytruxene‐block‐Polythiophene Multiblock Copolymers Made in an “AB2 + A” Approach , 2012, Advanced materials.

[20]  M. Ravikanth,et al.  Synthesis of non-covalent BODIPY–metalloporphyrin dyads and triads , 2012 .

[21]  M. Zandler,et al.  Control over photoinduced energy and electron transfer in supramolecular polyads of covalently linked azaBODIPY-bisporphyrin 'molecular clip' hosting fullerene. , 2012, Journal of the American Chemical Society.

[22]  M. Ravikanth,et al.  Synthesis and Properties of Covalently Linked Trichromophore Systems , 2011 .

[23]  D. Fortin,et al.  Singlet and triplet energy transfers in tetra-(meso-truxene)zinc(II)- and tetra-(meso-tritruxene)zinc(II) porphyrin and porphyrin-free base dendrimers. , 2011, Inorganic chemistry.

[24]  Jianzhuang Jiang,et al.  Rational design and synthesis for versatile FRET ratiometric sensor for Hg2+ and Fe2+: a flexible 8-hydroxyquinoline benzoate linked Bodipy-porphyrin dyad. , 2011, Organic letters.

[25]  S. Fukuzumi,et al.  Dynamics of closure of zinc bis-porphyrin molecular tweezers with copper(II) ions and electron transfer. , 2011, Chemistry.

[26]  D. Guldi,et al.  Promising fast energy transfer system via an easy synthesis: Bodipy-porphyrin dyads connected via a cyanuric chloride bridge, their synthesis, and electrochemical and photophysical investigations. , 2011, Inorganic chemistry.

[27]  M. Ravikanth,et al.  Synthesis of covalently linked boron–dipyrromethene–chromophore conjugates using 3-bromo boron–dipyrromethene as a key precursor , 2011 .

[28]  P. Harvey,et al.  Acceleration of the through space S1 energy transfer rates in cofacial bisporphyrin bio-inspired models by virtue of substituents effect on the Förster J integral and its implication in the antenna effect in the photosystems. , 2011, Chemical communications.

[29]  E. Blart,et al.  Panchromatic trichromophoric sensitizer for dye-sensitized solar cells using antenna effect. , 2011, Organic letters.

[30]  Matthew T. Whited,et al.  Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex. , 2011, Journal of the American Chemical Society.

[31]  R. Ziessel,et al.  Energy transfer dynamics in multichromophoric arrays engineered from phosphorescent Pt(II)/Ru(II)/Os(II) centers linked to a central truxene platform. , 2010, Inorganic chemistry.

[32]  R. Ziessel,et al.  A pre-organised truxene platform for phosphorescent [Ru(bpy)2] and [Os(bpy)2] metal centres: a clear-cut switch from Förster- to Dexter-type energy-transfer mechanism. , 2010, Chemistry.

[33]  M. Zandler,et al.  Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center. , 2010, Physical chemistry chemical physics : PCCP.

[34]  Jaehoon Jung,et al.  Remarkably efficient photocurrent generation based on a [60]fullerene-triosmium cluster/Zn-porphyrin/boron-dipyrrin triad SAM. , 2010, Chemistry.

[35]  R. Ziessel,et al.  Star-shaped multichromophoric arrays from Bodipy dyes grafted on truxene core. , 2009, Journal of the American Chemical Society.

[36]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[37]  Umakanta Tripathy,et al.  Photophysics of Soret-excited tetrapyrroles in solution. I. Metalloporphyrins: MgTPP, ZnTPP, and CdTPP. , 2008, The journal of physical chemistry. A.

[38]  Anthony Harriman,et al.  The chemistry of fluorescent bodipy dyes: versatility unsurpassed. , 2008, Angewandte Chemie.

[39]  E. Akkaya,et al.  Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative. , 2006, Organic letters.

[40]  M. Towrie,et al.  Ultrafast charge separation in a photoreactive rhenium-appended porphyrin assembly monitored by picosecond transient infrared spectroscopy. , 2006, Journal of the American Chemical Society.

[41]  J. Pei,et al.  Nanosized pi-conjugated molecules based on truxene and porphyrin: synthesis and high fluorescence quantum yields. , 2005, Organic letters.

[42]  P. Harvey,et al.  Triplet-triplet energy transfer controlled by the donor-acceptor distance in rigidly held palladium-containing cofacial bisporphyrins. , 2005, Chemistry.

[43]  S. Dufresne,et al.  Easy one-pot synthesis of energy transfer cassettes. , 2004, Organic letters.

[44]  M. Wasielewski,et al.  Competitive Electron Transfer from the S2and S1Excited States of Zincmeso-Tetraphenylporphyrin to a Covalently Bound Pyromellitimide: Dependence on Donor−Acceptor Structure and Solvent , 2004 .

[45]  P. Harvey,et al.  Role of the spacer in the singlet-singlet energy transfer mechanism (Förster vs Dexter) in cofacial bisporphyrins. , 2004, Journal of the American Chemical Society.

[46]  M. Fontaine‐Aupart,et al.  Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy , 2002 .

[47]  Hua-Zhong Yu,et al.  Ultrafast Dynamics of Porphyrins in the Condensed Phase: II. Zinc Tetraphenylporphyrin† , 2002 .

[48]  J. Pople,et al.  Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements , 2002 .

[49]  T. Peltola,et al.  Photoinduced Electron Transfer Reactions in a Porphyrin−Viologen Complex: Observation of S2 to S1 Relaxation and Electron Transfer from the S2 State , 1999 .

[50]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[51]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[52]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[53]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[54]  Michael C. Zerner,et al.  The Challenge of d and f electrons : theory and computation , 1989 .

[55]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[56]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[57]  Warren J. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first‐row transition metals , 1987 .

[58]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third‐and fourth‐row, main‐group elements , 1986 .

[59]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[61]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[62]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[63]  D. Fortin,et al.  A Conjugated Organometallic Polymer with Truxene Antennas as Side Arms; A Multiluminescent Material with Evidence for Intrachain MO Couplings , 2012, Journal of Inorganic and Organometallic Polymers and Materials.

[64]  Sandeep Kumar,et al.  Discotic nematic liquid crystals: science and technology. , 2010, Chemical Society reviews.

[65]  P. Harvey 113 – Recent Advances in Free and Metalated Multiporphyrin Assemblies and Arrays; A Photophysical Behavior and Energy Transfer Perspective , 2003 .

[66]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[67]  H. Misawa,et al.  Micrometer size effect upon the viscosity of individual droplets dispersed in the oil/water/dodecyl sulfate system: A transient absorption microspectroscopic study , 1995 .

[68]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[69]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .