Convergence of Adaptive Finite Elements for Optimal Control Problems with Control Constraints

We summarize our findings in the analysis of adaptive finite element methods for the efficient discretization of control constrained optimal control problems. We particularly focus on convergence of the adaptive method, i.e., we show that the sequence of adaptively generated discrete solutions converges to the true solution. We restrict the presentation to a simple model problem to highlight the key components of the convergence proof and comment on generalizations of the presented result.

[1]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[2]  Kunibert G. Siebert,et al.  A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..

[3]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[4]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[5]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[6]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[7]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[8]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[9]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[10]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[11]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[12]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[13]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[14]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[15]  E. Wagner International Series of Numerical Mathematics , 1963 .

[16]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[17]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[18]  Ronald H. W. Hoppe,et al.  Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .

[19]  Christian Kreuzer,et al.  Instance Optimality of the Adaptive Maximum Strategy , 2013, Found. Comput. Math..

[20]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[21]  Kunibert G. Siebert,et al.  A convergence proof for adaptive finite elements without lower bound , 2011 .

[22]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[23]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[24]  Christian Kreuzer,et al.  Decay rates of adaptive finite elements with Dörfler marking , 2011, Numerische Mathematik.

[25]  Kristina Kohls An adaptive finite element method for control-constrained optimal control problems , 2012 .

[26]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[27]  Kunibert G. Siebert,et al.  A Posteriori Error Estimators for Control Constrained Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.