Landslides in Valles Marineris (Mars): A possible role of basal lubrication by sub-surface ice

There is much interest on the occurrence of water and ice in the past history of Mars. Because landslides on Mars are much better conserved than their terrestrial counterparts, a physical examination and morphological analysis can reveal significant details on the depositional environment at the instant of failure. A study of the landslides in Valles Marineris based on their physical aspect is presented and the velocity of the landslides is calculated with a stretching block model. The results show that the landslides were subject to strong basal lubrication that made them travel at high speed and to long distances. We use physical analysis to explore the four alternative possibilities that the natural lubricant of the landslides in Valles Marineris was either ice, deep water, a shallow carpet of water, or evaporites. Examination of the furrows present on the surface of the landslide deposits shows that either sub-surface ice or evaporites were likely present on the floor of Valles Marineris during the mass failures.

[1]  Brian S. Bruckno,et al.  Engineering Geology , 1916, Nature.

[2]  B. Persson,et al.  Sliding Friction: Physical Principles and Applications , 1997 .

[3]  S. Leroueil,et al.  Fragmentation energy in rock avalanches , 2006 .

[4]  F. D. Blasio,et al.  Introduction to the Physics of Landslides , 2011 .

[5]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[6]  Andreas von Poschinger,et al.  Large rockslides in the Alps: A commentary on the contribution of G. Abele (1937–1994) and a review of some recent developments , 2002 .

[7]  S. C. Colbeck,et al.  Pressure melting and ice skating , 1995 .

[8]  T. Shea,et al.  Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches , 2008 .

[9]  Robert B. Leighton,et al.  The Surface of Mars , 2007 .

[10]  R. Schultz Stability of rock slopes in Valles Marineris, Mars , 2002 .

[11]  Timothy R. H. Davies,et al.  Runout of dry granular avalanches , 1999 .

[12]  A. R. Penner,et al.  The physics of sliding cylinders and curling rocks , 2001 .

[13]  F. D. Blasio The aureole of Olympus Mons (Mars) as the compound deposit of submarine landslides , 2011 .

[14]  J. Kargel Mars--A Warmer, Wetter Planet , 2004 .

[15]  D. Montgomery,et al.  Valles Marineris landslides: Evidence for a strength limit to Martian relief? , 2007 .

[16]  A. McEwen,et al.  Sublacustrine depositional fans in southwest Melas Chasma , 2009 .

[17]  M. McSaveney Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand , 2002 .

[18]  James W. Head,et al.  Oceans on Mars: An assessment of the observational evidence and possible fate , 2002 .

[19]  F. P. Bowden,et al.  Friction on snow and ice , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Christophe Delacourt,et al.  New insights on the runout of large landslides in the Valles‐Marineris canyons, Mars , 2006 .

[21]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[22]  B. Lucchitta Lakes in Valles Marineris , 2010 .

[23]  B. Lucchitta Landslides in the Valles Marineris, Mars. , 1979 .

[24]  Theodor H. Erismann,et al.  Dynamics of rockslides and rockfalls , 2001 .

[25]  B. Voight Rockslides and avalanches , 1978 .

[26]  J. N. Hutchinson Chalk flows from the coastal cliffs of northwest Europe , 2002 .

[27]  S. Taylor,et al.  Planetary Crusts: Their Composition, Origin and Evolution , 2009 .

[28]  T. Davies,et al.  Longitudinal ridges in mass movement deposits , 2009 .

[29]  Adrian E. Scheidegger,et al.  On the prediction of the reach and velocity of catastrophic landslides , 1973 .

[30]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[31]  M. Manga,et al.  Martian landslides in Valles Marineris: Wet or dry? , 2006 .

[32]  K. Harrison,et al.  Rheological constraints on martian landslides , 2002 .

[33]  V. Adushkin MOBILITY OF ROCK AVALANCHES TRIGGERED BY UNDERGROUND NUCLEAR EXPLOSIONS , 2006 .

[34]  D. Baioni,et al.  Evidence for subaqueously resedimented sulphate evaporites on Mars , 2010 .

[35]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[36]  F. Legros The mobility of long-runout landslides , 2002 .

[37]  Giovanni B. Crosta,et al.  Fragmentation in the Val Pola rock avalanche, Italian Alps , 2007 .

[38]  Jeffrey G. Marr,et al.  On the frontal dynamics and morphology of submarine debris flows , 2004 .

[39]  David C. Pieri,et al.  Coastal Geomorphology of the Martian northern plains , 1993 .

[40]  D. Hillel,et al.  The stability of ground ice in the equatorial region of Mars , 1983 .

[41]  F. D. Blasio Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalanches , 2009 .

[42]  Kelin X. Whipple,et al.  Hydroplaning of subaqueous debris flows , 1995 .

[43]  Peter Gauer,et al.  Understanding the high mobility of subaqueous debris flows , 2006 .

[44]  Jerome V. DeGraff,et al.  Catastrophic landslides : effects, occurrence, and mechanisms , 2002 .

[45]  J. Michalski,et al.  Meridiani Planum sediments on Mars formed through weathering in massive ice deposits , 2009 .

[46]  E. Rabinowicz,et al.  Friction and Wear of Self-Lubricating Metallic Materials , 1975 .

[47]  Giovanni B. Crosta,et al.  Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps) , 2008 .

[48]  Ali Safaeinili,et al.  Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars , 2008, Science.

[49]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[50]  M. McSaveney Chapter 6 - Sherman Glacier Rock Avalanche, Alaska, U.S.A. , 1978 .

[51]  H. Schlichting Boundary Layer Theory , 1955 .

[52]  Kenneth J. Hsü,et al.  Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls , 1975 .

[53]  Christophe Delacourt,et al.  Ages of Valles Marineris (Mars) landslides and implications for canyon history , 2004 .