North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states

Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort.

Patrick Heimbach | Sergey Danilov | Yosuke Fujii | Markus Scheinert | Sophie Valcke | Eric P. Chassignet | Thomas Jung | Gurvan Madec | Simona Masina | Nikolay Diansky | Arne Biastoch | Gokhan Danabasoglu | Stephen M. Griffies | Helge Drange | Maxwell Kelley | Petteri Uotila | Christophe Cassou | Gael Forget | Dmitry Sidorenko | Anna Pirani | Andrew C. Coward | Anthony Leboissetier | Hiroyuki Tsujino | Qiang Wang | Jianhua Lu | Riccardo Farneti | Antonio Navarra | David A. Bailey | B. Samuels | G. Danabasoglu | W. Large | V. Canuto | M. Kelley | S. Griffies | P. Heimbach | E. Chassignet | A. Navarra | H. Drange | A. Pirani | H. Tsujino | G. Madec | S. Yeager | D. Bailey | A. Biastoch | A. Gusev | A. Voldoire | C. Cassou | S. Valcke | E. Fernandez | P. Fogli | S. Marsland | P. Uotila | M. Bentsen | R. Farneti | Y. Fujii | S. Masina | T. Jung | N. Diansky | A. Nurser | Jianhua Lu | A. Coward | D. Sidorenko | S. Danilov | C. Böning | A. Tréguier | Qiang Wang | A. Leboissetier | G. Forget | A. Howard | A. Bozec | Bonita L. Samuels | William G. Large | Pier Giuseppe Fogli | A. J. George Nurser | Aurore Voldoire | Anne-Marie Treguier | Mats Bentsen | Alexandra Bozec | Claus W. Böning | Elodie Fernandez | David Salas y Mélia | Steve G. Yeager | D. Bi | Simon J. Marsland | Erik Behrens | Daohua Bi | Vittorio M. Canuto | Anatoly Gusev | Armando Howard | E. Behrens | M. Scheinert | D. Mélia | A. J. George Nurser | A. Treguier | Qiang Wang | Daohua Bi | David Salas y Mélia | V. M. Canuto

[1]  Stephen M. Griffies,et al.  A boundary-value problem for the parameterized mesoscale eddy transport , 2010 .

[2]  Gurvan Madec,et al.  Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models , 2000 .

[3]  S. Griffies,et al.  Evaluation of ACCESS climate model ocean diagnostics in CMIP5 simulations , 2013 .

[4]  Bruno Blanke,et al.  Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics , 1993 .

[5]  H. Burchard,et al.  A generic length-scale equation for geophysical turbulence models , 2003 .

[6]  Andrew C. Lorenc,et al.  Why does 4D‐Var beat 3D‐Var? , 2005 .

[7]  M. Baringer,et al.  Ocean Heat Transport , 2013 .

[8]  David Rind,et al.  A coupled atmosphere‐ocean model for transient climate change studies , 1995 .

[9]  Qiang Wang,et al.  Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation , 2008 .

[10]  Colm Sweeney,et al.  Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport , 2005 .

[11]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[12]  Isaac M. Held,et al.  A Scaling Theory for Horizontally Homogeneous, Baroclinically Unstable Flow on a Beta Plane , 1996 .

[13]  Tom Chen,et al.  Design and implementation , 2006, IEEE Commun. Mag..

[14]  Gokhan Danabasoglu,et al.  Climate impacts of parameterized Nordic Sea overflows , 2010 .

[15]  Thierry Penduff,et al.  Eddy-permitting ocean circulation hindcasts of past decades , 2007 .

[16]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[17]  R. Redler,et al.  The Relative Importance of Northern Overflow and Subpolar Deep Convection for the North Atlantic Thermohaline Circulation , 1997 .

[18]  K. Bryan,et al.  A water mass model of the world ocean circulation , 1979 .

[19]  Timothy P. Boyer,et al.  World ocean database 2009 , 2006 .

[20]  M. Maqueda,et al.  Water properties and circulation in Arctic Ocean models , 2007 .

[21]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[22]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[23]  R. Sutton,et al.  Atlantic Ocean Forcing of North American and European Summer Climate , 2005, Science.

[24]  T. Fichefet,et al.  Realistic representation of the surface freshwater flux in an ice–ocean general circulation model , 2001 .

[25]  H. Hasumi,et al.  CCSR Ocean Component Model (COCO), version 2.1 , 2000 .

[26]  N. Wells,et al.  Ocean circulation and climate , 2002 .

[27]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[28]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[29]  Rainer Bleck,et al.  Salinity-driven Thermocline Transients in a Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic , 1992 .

[30]  B. Samuels,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability , 2016 .

[31]  Carl Wunsch,et al.  Practical global oceanic state estimation , 2007 .

[32]  Stephen M. Griffies,et al.  Fundamentals of Ocean Climate Models , 2004 .

[33]  Marika M. Holland,et al.  Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea ice , 2012 .

[34]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[35]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[36]  G. Madec,et al.  Geothermal heating, diapycnal mixing and the abyssal circulation , 2008 .

[37]  J. Marotzke,et al.  Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. , 2007, Science.

[38]  S. Doney,et al.  Antarctic Bottom Water Formation and Deep-Water Chlorofluorocarbon Distributions in a Global Ocean Climate Model , 2002 .

[39]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[40]  T. Motoi,et al.  Reevaluation of the Takano–Oonishi Scheme for Momentum Advection on Bottom Relief in Ocean Models , 1999 .

[41]  James C. McWilliams,et al.  Anisotropic horizontal viscosity for ocean models , 2003 .

[42]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[43]  Frank O. Bryan,et al.  Impact of ocean model resolution on CCSM climate simulations , 2012, Climate Dynamics.

[44]  Patrick Heimbach,et al.  OVERVIEW OF THE FORMULATION AND NUMERICS OF THE MIT GCM . vnorth uwest ueast vsouth wup , 2004 .

[45]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[46]  E. Muñoz,et al.  Varied representation of the Atlantic Meridional Overturning across multidecadal ocean reanalyses , 2011 .

[47]  Jens Schröter,et al.  A finite-element ocean model: principles and evaluation , 2004 .

[48]  R. Döscher,et al.  A Method for Improved Representation of Dense Water Spreading over Topography in Geopotential-Coordinate Models , 1997 .

[49]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[50]  J. Oberhuber,et al.  The variability of the tropical Atlantic , 1998 .

[51]  Hajo Eicken,et al.  Thermal conductivity of landfast Antarctic and Arctic sea ice , 2007 .

[52]  W. R. Holland,et al.  Deep-water formation and meridional overturning in a high-resolution model of the north Atlantic , 1996 .

[53]  Sylvain Bouillon,et al.  Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation , 2009 .

[54]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[55]  L. Axell Wind‐driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea , 2002 .

[56]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[57]  B. Samuels,et al.  GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation , 2006 .

[58]  Sonya Legg,et al.  Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models☆ , 2006 .

[59]  Marika M. Holland,et al.  Ocean viscosity and climate , 2008 .

[60]  Reto Knutti,et al.  Ocean Heat Transport as a Cause for Model Uncertainty in Projected Arctic Warming , 2011 .

[61]  Jiqiang Zhai,et al.  Design and Implementation , 2011 .

[62]  Valérie Dulière,et al.  On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model , 2005 .

[63]  W. Johns,et al.  Gulf Stream structure, transport, and recirculation near 68°W , 1995 .

[64]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[65]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[66]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[67]  H. Drange,et al.  Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation , 2005, Science.

[68]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[69]  T. Yasuda,et al.  Coupled Climate Simulation by Constraining Ocean Fields in a Coupled Model with Ocean Data , 2009 .

[70]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[71]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[72]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[73]  James C. McWilliams,et al.  Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology , 1997 .

[74]  John K. Dukowicz,et al.  The Elastic Viscous Plastic Sea Ice Dynamics Model in General Orthogonal Curvilinear Coordinates on a Sphere—Incorporation of Metric Terms , 2002 .

[75]  James C. McWilliams,et al.  Diurnal Coupling in the Tropical Oceans of CCSM3 , 2006 .

[76]  J. Hurrell,et al.  Atlantic climate variability and predictability: A CLIVAR perspective , 2006 .

[77]  Mathew E. Maltrud,et al.  Implementing biharmonic neptune in a global eddying ocean model , 2008 .

[78]  M. Maqueda,et al.  An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids , 2009 .

[79]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[80]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[81]  William H. Lipscomb,et al.  Scientific description of the sea ice component in the Community Climate System Model , 2004 .

[82]  Mariana Vertenstein,et al.  The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) , 2010 .

[83]  G. Madec,et al.  How momentum advection schemes influence current-topography interactions at eddy permitting resolution , 2009 .

[84]  Greg Holloway,et al.  Representing eddy stress in an Arctic Ocean model , 2009 .

[85]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[86]  Jean-Michel André,et al.  Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model , 2007 .

[87]  Frank O. Bryan,et al.  Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity , 2001 .

[88]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[89]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[90]  Thomas B. Sanford,et al.  Reduced mixing from the breaking of internal waves in equatorial waters , 2003, Nature.

[91]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[92]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[93]  G. Danabasoglu,et al.  Effects of vertical variations of thickness diffusivity in an ocean general circulation model , 2007 .

[94]  Scott C. Doney,et al.  Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models , 2002 .

[95]  E. Volodin,et al.  Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations , 2010 .

[96]  J. Schröter,et al.  Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model , 2009 .

[97]  G. Halliwell,et al.  Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM) , 2004 .

[98]  Ron Kwok,et al.  Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 , 2009 .

[99]  Jorge L. Sarmiento,et al.  Tracer dating and ocean ventilation , 1990 .

[100]  G. Madec,et al.  Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model , 2007 .

[101]  Alicia R. Karspeck,et al.  A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content , 2012 .

[102]  G. Danabasoglu,et al.  Mechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation , 2007 .

[103]  Bonnie Light,et al.  A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model , 2007 .

[104]  James C. McWilliams,et al.  Parameterization of Eddy Fluxes near Oceanic Boundaries , 2008 .

[105]  E. Kowalczyk,et al.  The ACCESS coupled model: description, control climate and evaluation , 2013 .

[106]  Yosuke Fujii,et al.  Application of Nonlinear Constraints in a Three-Dimensional Variational Ocean Analysis , 2005 .

[107]  Hans Burchard Energy-conserving discretisation of turbulent shear and buoyancy production , 2002 .

[108]  Chris Harris,et al.  Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system , 2010 .

[109]  B. Samuels,et al.  An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations , 2014 .

[110]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[111]  John K. Dukowicz,et al.  Isoneutral Diffusion in a z-Coordinate Ocean Model , 1998 .

[112]  Stephen Pond,et al.  A Numerical Model of the Circulation in Knight Inlet, British Columbia, Canada , 1995 .

[113]  William R. Holland,et al.  Baroclinic and topographic influences on the transport in western boundary currents , 1973 .

[114]  D. Nychka Data Assimilation” , 2006 .

[115]  Effects of sinking of salt rejected during formation of sea ice on results of an ocean‐atmosphere‐sea ice climate model , 1999 .

[116]  G. Forget Mapping Ocean Observations in a Dynamical Framework: A 2004–06 Ocean Atlas , 2010 .

[117]  C. Böning,et al.  Seasonal cycle of meridional heat transport in the subtropical North Atlantic: a model intercomparison in relation to observations near 25°N , 2001 .

[118]  N. Yakovlev Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948–2002: Part I. Numerical model , 2009 .

[119]  D. Webb,et al.  The Development of a Free-Surface Bryan–Cox–Semtner Ocean Model , 1991 .

[120]  Ivane Pairaud,et al.  Energy conservation issues in sigma-coordinate free-surface ocean models , 2008 .

[121]  B. Samuels,et al.  Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations , 2010 .

[122]  Randy Showstack,et al.  World Ocean Database , 2009 .

[123]  James C. McWilliams,et al.  Sensitivity of an Ocean General Circulation Model to a Parameterization of Near-Surface Eddy Fluxes , 2008 .

[124]  G. Danabasoglu,et al.  Sensitivity of Atlantic Meridional Overturning Circulation Variability to Parameterized Nordic Sea Overflows in CCSM4 , 2012 .

[125]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[126]  An Overflow parameterization for the ocean component of the Community Climate System Model , 2010 .

[127]  Jean-Marc Molines,et al.  Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean , 2008 .

[128]  Gurvan Madec,et al.  Is the thermohaline circulation changing , 2006 .

[129]  Y. Fujii,et al.  Barrier Layer and Relevant Variability of the Salinity Field in the Equatorial Pacific Estimated in an Ocean Reanalysis Experiment , 2012, Pure and Applied Geophysics.

[130]  William E. Johns,et al.  Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N , 2011 .

[131]  Martin Visbeck,et al.  Interannual to decadal variability of outflow from the Labrador Sea , 2010 .

[132]  David Rind,et al.  Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years , 2000 .

[133]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[134]  M. Eby,et al.  Sensitivity of a Large-Scale Ocean Model to a Parameterization of Topographic Stress , 1994 .

[135]  R. Hallberg Some aspects of the circulation in ocean basins with isopycnals intersecting the sloping boundaries , 1995 .

[136]  N. Yakovlev Reproduction of the large-scale state of water and sea ice in the Arctic Ocean from 1948 to 2002: Part II. The state of ice and snow cover , 2009 .

[137]  Fei Liu,et al.  Model Description and Validation , 2006 .

[138]  A. Blumberg,et al.  Wave Breaking and Ocean Surface Layer Thermal Response , 2004 .

[139]  A. Biastoch,et al.  Spurious AMOC trends in global ocean sea-ice models related to subarctic freshwater forcing , 2013 .

[140]  R. Redler,et al.  Effect of the overflows on the circulation in the subpolar North Atlantic: A regional model study , 1997 .

[141]  Anthony Rosati,et al.  Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic , 2006 .

[142]  Patrick Heimbach,et al.  Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint , 2005 .

[143]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[144]  V. Canuto,et al.  Ocean turbulence, III: New GISS vertical mixing scheme , 2010 .

[145]  H. Hurlburt,et al.  On the currents and transports connected with the atlantic meridional overturning circulation in the subpolar North Atlantic , 2013 .

[146]  D. Salas Mélia,et al.  A global coupled sea ice–ocean model , 2002 .

[147]  J. Willebrand,et al.  Mechanisms affecting the overturning response in global warming simulations , 2005 .

[148]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[149]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[150]  W. R. Holland,et al.  On the Midlatitude Circulation in a High-Resolution Model of the North Atlantic , 1995 .

[151]  N. Suginohara,et al.  Effects of Bottom Boundary Layer Parameterization on Reproducing Deep and Bottom Waters in a World Ocean Model , 2002 .

[152]  Kevin E. Trenberth,et al.  Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations , 2002 .

[153]  P. Smithson,et al.  The global ocean , 2013 .

[154]  S. Yeager,et al.  The connection between Labrador Sea buoyancy loss, deep western boundary current strength, and Gulf Stream path in an ocean circulation model , 2009 .

[155]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[156]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[157]  Katja Lohmann,et al.  A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid‐1990s , 2009 .

[158]  G. Madec NEMO ocean engine , 2008 .

[159]  S. Jayne,et al.  The Impact of Abyssal Mixing Parameterizations in an Ocean General Circulation Model , 2009 .

[160]  T. McDougall Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes , 2003 .

[161]  William E. Johns,et al.  The atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models , 2013 .

[162]  Marcus Dengler,et al.  Boundary Circulation at the Exit of the Labrador Sea , 2004 .

[163]  R. Döscher,et al.  Effects of a Bottom Boundary Layer Parameterization in a Coarse-Resolution Model of the North Atlantic Ocean , 2000 .

[164]  S. Bates,et al.  The CCSM4 Ocean Component , 2012 .

[165]  Hideyuki Nakano,et al.  Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector , 2011 .

[166]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[167]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[168]  G. Madec,et al.  Tidal mixing in the Indonesian Seas and its effect on the tropical climate system , 2010 .

[169]  D. Bi,et al.  The sea-ice performance of the Australian climate models participating in the CMIP5 , 2013 .

[170]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[171]  D. Luther,et al.  On a Simple Empirical Parameterization of Topography-Catalyzed Diapycnal Mixing in the Abyssal Ocean , 2010 .

[172]  D. Martinson,et al.  Sensitivity of sea ice to physical parameterizations in the GISS global climate model , 2001 .

[173]  A. Watson,et al.  Bio‐optical feedbacks among phytoplankton, upper ocean physics and sea‐ice in a global model , 2005 .

[174]  K. Fujioka,et al.  Introduction to the Special Issue on the Impact of the Ocean Drilling Program , 2006 .

[175]  Isaac M. Held,et al.  Parameterization of Quasigeostrophic Eddies in Primitive Equation Ocean Models. , 1997 .

[176]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[177]  Y. Fujii,et al.  Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes , 2003 .

[178]  Stefan Rahmstorf,et al.  A fast and complete convection scheme for ocean models , 1993 .

[179]  George L. Mellor,et al.  An Ice-Ocean Coupled Model , 1989 .

[180]  L. St. Laurent,et al.  Estimating tidally driven mixing in the deep ocean , 2002 .

[181]  S. Griffies,et al.  ACCESS-OM: the Ocean and Sea ice Core of the ACCESS Coupled Model , 2013 .

[182]  Taotao Qian,et al.  Changes in Continental Freshwater Discharge from 1948 to 2004 , 2009 .

[183]  Philippe Gaspar,et al.  A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site , 1990 .

[184]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[185]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[186]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[187]  Eric P. Chassignet,et al.  North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity , 2003 .

[188]  Rainer Bleck,et al.  A Wind-Driven Isopycnic Coordinate Model of the North and Equatorial Atlantic Ocean 1 , 1990 .

[189]  Yosuke Fujii,et al.  Meteorological research institute multivariate ocean variational estimation (MOVE) system : Some early results , 2006 .