A-priori analysis and the finite element method for a class of degenerate elliptic equations

Consider the degenerate elliptic operator L δ := -∂ 2 x - δ 2 x 2 ∂ 2 y on Ω:= (0,1) × (0,l), for δ > 0,1 > 0. We prove well-posedness and regularity results for the degenerate elliptic equation L δ u = f in Ω, u|∂Ω = 0 using weighted Sobolev spaces K m a . In particular, by a proper choice of the parameters in the weighted Sobolev spaces K m a , we establish the existence and uniqueness of the solution. In addition, we show that there is no loss of K m a -regularity for the solution of the equation. We then provide an explicit construction of a sequence of finite dimensional subspaces V n for the finite element method, such that the optimal convergence rate is attained for the finite element solution u n ∈ V n , i.e., ∥u - u n ∥ H1(Ω) < Cdim(V n )-m 2 ∥f∥ Hm-1(Ω) with C independent of / and n.

[1]  M. Langlais On the Continuous Solutions of a Degenerate Elliptic Equation , 1985 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  L. Wahlbin On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .

[4]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[5]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[6]  Weighted Sobolev spaces and regularity for polyhedral domains , 2006, math/0609101.

[7]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[8]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[9]  Donald A. French,et al.  The finite element method for a degenerate elliptic equation , 1987 .

[10]  Ludmil Zikatanov,et al.  Regularity and well posedness for the Laplace operator on polyhedral domains , 2004 .

[11]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[12]  Ivo Babuska,et al.  Finite element method for domains with corners , 1970, Computing.

[13]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[14]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[15]  J. E. Lewis,et al.  Pseudodifferential operators of mellin type , 1983 .

[16]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[17]  Bernd Ammann,et al.  Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains , 2004 .

[18]  Boundary integral operators on curved polygons , 1983 .

[19]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[20]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[21]  Seokchan Kim,et al.  A Finite Element Method Using Singular Functions for the Poisson Equation: Corner Singularities , 2001, SIAM J. Numer. Anal..

[22]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[23]  Douglas N. Arnold,et al.  Regular Inversion of the Divergence Operator with Dirichlet Boundary Conditions on a Polygon. , 1987 .

[24]  V. Felli,et al.  A Note on Regularity of Solutions to Degenerate Elliptic Equations of Caffarelli-Kohn-Nirenberg Type , 2003, math/0306373.

[25]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[26]  Ludmil T. Zikatanov,et al.  Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps , 2005, Numerische Mathematik.

[27]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[28]  W. Gu,et al.  Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 1 . Model Development , 1998 .

[29]  Victor Nistor,et al.  INTERIOR NUMERICAL APPROXIMATION OF BOUNDARY VALUE PROBLEMS WITH A DISTRIBUTIONAL DATA , 2004 .

[30]  Thomas Apel,et al.  Graded Mesh Refinement and Error Estimates for Finite Element Solutions of Elliptic Boundary Value P , 1996 .

[31]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .

[32]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[33]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[34]  Xuejun Zhang,et al.  Uniform convergence of the multigrid {V}-cycle for an anisotropic problem , 2001, Math. Comput..

[35]  I. Babuška,et al.  Direct and inverse error estimates for finite elements with mesh refinements , 1979 .

[36]  Bor Yann Liaw,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells II. Application to Nickel‐Cadmium and Nickel‐Metal Hydride Cells , 1998 .

[37]  Victor Nistor,et al.  Analysis of a modified Schrödinger operator in 2D: Regularity, index, and FEM , 2009 .

[38]  Constantin Bacuta,et al.  Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains , 2003 .

[39]  K. K. Boimatov Estimates of the Solutions of Strongly Degenerate Elliptic Equations in Weighted Sobolev Spaces , 2002 .

[40]  V. Nistor,et al.  Sobolev spaces and regularity for polyhedral domains , 2004 .

[41]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[42]  Hengguang Li,et al.  ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ∗ , 2010 .

[43]  Joseph E. Pasciak,et al.  The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations , 2006, Math. Comput..

[44]  Vladimir Maz’ya,et al.  Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .

[45]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[46]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[47]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[48]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[49]  Sergey Nazarov,et al.  List of spaces , 1994 .

[50]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .