Linear Semiconductor Optical Amplifiers

The chapter reviews properties and applications of linear semiconductor optical amplifiers (SOA). Section 12.1 covers SOA basics, including working principles, material systems, structures and their growth. Booster or inline amplifiers as well as low-noise preamplifiers are classified. Section 12.2 discusses the influence of parameters like gain, noise figure, gain saturation, gain and phase dynamics, and alpha-factor. In Sect. 12.3, the application of a linear SOA as a reach extender in future access networks is addressed. The input power dynamic range is introduced, and measurements for on-off keying and phase shift keying signals are shown. Section 12.4 presents the state of the art for commercially available SOA and includes a treatment of reflective SOAs (RSOA) as well.

[1]  David W. Smith,et al.  High temperature, colourless operation of a reflective semiconductor optical amplifier for 2.5 Gbit/s upstream transmission in a WDM-PON , 2007 .

[2]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[3]  E. Desurvire,et al.  Erbium‐Doped Fiber Amplifiers: Principles and Applications , 1995 .

[4]  Ken-ichi Kitayama,et al.  Cross-Gain Modulation in Quantum-Dot SOA at 1550 nm , 2010, IEEE Journal of Quantum Electronics.

[5]  D. Bimberg,et al.  1.3 / 1.5 µm QD-SOAs for WDM/TDM GPON with extended reach and large upstream / downstream dynamic range , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[6]  Yukihiro Tsuji,et al.  1.3 µm GaInNAs Bandgap Difference Confinement Semiconductor Optical Amplifiers , 2006 .

[7]  Yoriko Tominaga,et al.  Low Temperature Dependence of Oscillation Wavelength in GaAs1-xBix Laser by Photo-Pumping , 2010 .

[8]  Z. Alferov,et al.  Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology , 2001 .

[9]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[10]  W Freude,et al.  Linear and nonlinear semiconductor optical amplifiers , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[11]  Yasuhiko Arakawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers , 2003, Proceedings of the IEEE.

[12]  Yoshio Noguchi,et al.  Polarization-insensitive optical amplifier with tensile-strained-barrier MQW structure , 1994 .

[13]  D. J. Hagan,et al.  Kramers-Krönig relations in nonlinear optics , 1992 .

[14]  A. Gopinath,et al.  Polarization-insensitive optical amplifiers in AlInGaAs , 2001, IEEE Photonics Technology Letters.

[15]  Juerg Leuthold,et al.  100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration , 2000 .

[16]  Jin Wang,et al.  Pattern Effect Mitigation Techniques for All-Optical Wavelength Converters Based on Semiconductor Optical Amplifiers , 2010 .

[17]  G. Duan,et al.  Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 $\mu$m , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  C. Koos,et al.  Impact of alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM Signals , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[19]  R V Penty,et al.  Temperature Independent Optical Amplification in Uncooled Quantum Dot Optical Amplifiers , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[20]  Hong Ma,et al.  1.55 μm AlGaInAs/InP polarization-insensitive optical amplifier with tensile strained wells grown by MOCVD , 2003 .

[21]  Ken Morito High-power semiconductor optical amplifier , 2009, OFC 2009.

[22]  A. Fiore,et al.  Differential Gain and Gain Compression in Quantum-Dot Lasers , 2007, IEEE Journal of Quantum Electronics.

[23]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[24]  M. Ekawa,et al.  1.55-μm polarization-insensitive quantum dot semiconductor optical amplifier , 2008, 2008 34th European Conference on Optical Communication.

[25]  P. Doussiere,et al.  High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique , 1995, IEEE Photonics Technology Letters.

[26]  Michael J. Connelly,et al.  Semiconductor Optical Amplifiers , 2002 .

[27]  G. Guekos,et al.  Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length , 2000, IEEE Journal of Quantum Electronics.

[28]  Juerg Leuthold,et al.  Advanced indium-phosphide waveguide Mach-Zehnder interferometer all-optical switches and wavelength converters , 1998 .

[29]  S. Sugou,et al.  High-temperature characteristics of 1.3-μm InAsP-InAlGaAs ridge waveguide lasers , 1999, IEEE Photonics Technology Letters.

[30]  Juerg Leuthold,et al.  Influence of InGaAs cap layers with different In concentration on the properties of InGaAs quantum dots , 2008 .

[31]  D Hillerkuss,et al.  Quantum dot SOA dynamic range improvement for phase modulated signals , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[32]  K. Morito,et al.  Record high saturation power (+22 dBm) and low noise figure (5.7 dB) polarization-insensitive SOA module , 2005, IEEE Photonics Technology Letters.

[33]  L A Coldren,et al.  High Performance InP-Based Photonic ICs—A Tutorial , 2011, Journal of Lightwave Technology.

[34]  Nikolai N. Ledentsov,et al.  High speed nanophotonic devices based on quantum dots , 2006 .

[35]  Robert J. Manning,et al.  Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies , 1994 .

[36]  R Brenot,et al.  Quantum dots semiconductor optical amplifier with a-3dB bandwidth of up to 120 nm in semi-cooled operation , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[37]  Kodo Kawase,et al.  Terahertz Optics: Component Spatial PatternAnalysis of ChemicalsBy Use of TerahertzSpectroscopic Imaging , 2003 .

[38]  J. Mørk,et al.  Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers , 1997 .

[39]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[40]  C Koos,et al.  Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. , 2008, Optics express.

[41]  A. Borghesani,et al.  High saturation power (>16.5 dBm) and low noise figure (<6 dB) semiconductor optical amplifier for C-band operation , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[42]  G. Bramann,et al.  Optically clocked ultra long SOAs: a novel technique for high speed 3R signal regeneration , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[43]  Stephen J. Sweeney,et al.  Bismide-alloys for higher efficiency infrared semiconductor lasers , 2010, 22nd IEEE International Semiconductor Laser Conference.

[44]  I. Tomkos,et al.  Simulation of Multiwavelength Regeneration Based on QD Semiconductor Optical Amplifiers , 2007, IEEE Photonics Technology Letters.

[45]  S. Tsuji,et al.  Single-mode semiconductor injection lasers for optical fiber communications , 1981 .

[46]  R. Olshansky,et al.  Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources , 1984 .

[47]  R. Tucker,et al.  Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers , 2000 .

[48]  Qi Jie Wang,et al.  All-optical logic XOR using differential scheme and Mach-Zehnder interferometer , 2002 .

[49]  A. Bjarklev Optical Fiber Amplifiers: Design and System Applications , 1993 .

[50]  Wolfgang Freude,et al.  Saturation characteristics of InGaAsP-InP bulk SOA , 2010, OPTO.

[51]  Nikolai N. Ledentsov,et al.  On gain saturation in quantum dot semiconductor optical amplifiers , 2005 .

[52]  T. Zwick,et al.  Rival signals in SOA reach-extended WDM-TDM-GPON converged with RoF , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[53]  U. Koren,et al.  1.5 mu m multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain , 1993, IEEE Photonics Technology Letters.

[54]  Patrick Runge,et al.  Nonlinear Effects in Ultralong Semiconductor Optical Amplifiers for Optical Communications: Physics and Applications , 2010 .

[55]  W. Freude,et al.  Temporal Dynamics of the Alpha Factor in Semiconductor Optical Amplifiers , 2007, Journal of Lightwave Technology.

[56]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[57]  Y. Arakawa,et al.  Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers , 2004 .

[58]  J. Leuthold,et al.  Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model , 2000 .

[59]  Johann Peter Reithmaier,et al.  InAs/InP Quantum-Dash Lasers and Amplifiers , 2007, Proceedings of the IEEE.

[60]  Lorenzo Occhi,et al.  Semiconductor optical amplifiers made of ridge waveguide bulk InGaAsP/Inp , 2002 .

[61]  L.H. Spiekman,et al.  Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications , 2004, Journal of Lightwave Technology.

[62]  D. Bimberg,et al.  Single and multiple channel operation dynamics of linear quantum-dot semiconductor optical amplifier , 2008, 2008 34th European Conference on Optical Communication.

[63]  D. Bimberg,et al.  Optical and electrical power dynamic range of semiconductor optical amplifiers in radio-over-fiber networks , 2010, 36th European Conference and Exhibition on Optical Communication.

[64]  J. Leuthold,et al.  160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties , 2004 .

[65]  G. Guekos,et al.  Gain recovery of bulk semiconductor optical amplifiers , 1998, IEEE Photonics Technology Letters.

[66]  H.A. Haus Noise figure definition valid from RF to optical frequencies , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[67]  Mitsuru Sugawara,et al.  Polarization-Independent Photoluminescence from Columnar InAs/GaAs Self-Assembled Quantum Dots , 2002 .

[68]  Anna Borghesani Reflective based active semiconductor components for next generation optical access networks , 2010, 36th European Conference and Exhibition on Optical Communication.

[69]  David F. Welch,et al.  Large-scale photonic integrated circuits for long-haul transmission and switching , 2007 .

[70]  Wei Huang,et al.  New semiconductor alloy GaNAsBi with temperature‐insensitive bandgap , 2006 .

[71]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[72]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[73]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[74]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[75]  A. Uetake,et al.  Polarization-Insensitive GaInNAs–GaInAs MQW-SOA With Low Noise Figure and Small Gain Tilt Over 90-nm Bandwidth (1510–1600 nm) , 2008, IEEE Photonics Technology Letters.

[76]  M. Ekawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers With Polarization-Independent Gains in 1.5-$\mu$ m Wavelength Bands , 2008, IEEE Photonics Technology Letters.

[77]  Peter S. Zory,et al.  Quantum well lasers , 1993 .

[78]  Y. Kotaki,et al.  High-output-power polarization-insensitive semiconductor optical amplifier , 2003 .

[79]  Jesper Mørk,et al.  Saturation induced by picosecond pulses in semiconductor optical amplifiers , 1997 .

[80]  T. W. Berg,et al.  The Dynamics of Semiconductor Optical Amplifiers: Modeling and Applications , 2003 .

[81]  David Hillerkuss,et al.  Optimizing SOA for Large Input Power Dynamic Range With Respect to Applications in Extended GPON , 2010 .

[82]  Yikai Su,et al.  40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1000000 km , 2002 .

[83]  J. P. Sokoloff,et al.  A terahertz optical asymmetric demultiplexer (TOAD) , 1993, IEEE Photonics Technology Letters.

[84]  Nikolai N. Ledentsov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain , 2003 .

[85]  S. Cabot,et al.  All-optical wavelength conversion using a pulse reformatting optical filter , 2004, Journal of Lightwave Technology.

[86]  Tristan Kremp Split-step Wavelet-Kollokationsmethoden zur Simulation linearer und nichtlinearer optischer Wellenausbreitung (Split-step Wavelet Collocation Methods for Linear and Nonlinear Optical Wave Propagation) , 2004, it Inf. Technol..

[87]  Paul D. Townsend,et al.  Spectral slicing WDM-PON using wavelength-seeded reflective SOAs , 2001 .

[88]  Laurent Schares,et al.  Phase modeling based on the /spl alpha/-factor in bulk semiconductor optical amplifiers , 2003 .

[89]  Frederic Pommereau,et al.  Chirp reduction in quantum dot-like semiconductor optical amplifiers , 2007 .

[90]  D Hillerkuss,et al.  Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals. , 2010, Optics express.

[91]  W. Freude,et al.  Multi-Wavelength Regenerative Amplification Based on Quantum-Dot Semiconductor Optical Amplifiers , 2007, 2007 9th International Conference on Transparent Optical Networks.

[92]  Jesper Mørk,et al.  Theory of the ultrafast optical response of active semiconductor waveguides , 1996 .

[93]  Maurice Bernard,et al.  Laser Conditions in Semiconductors , 1961, 1961.

[94]  I. Andonovic,et al.  Polarization-Insensitive SOAs Using Strained Bulk Active Regions , 2006, Journal of Lightwave Technology.