Hot plasma parameters of Jupiter's inner magnetosphere

The bulk parameters of the hot (>20 keV) plasmas of Jupiter's inner magnetosphere, including the vicinity of the Io plasma torus, are presented for the first time (L = 5 to 20 RJ). The low-energy charged particle (LECP) instrument on Voyager 1 that obtained the data presented here was severely overdriven within the inner regions of Jupiter's magnetosphere. On the basis of laboratory calibrations using a flight spare instrument, a Monte Carlo computer algorithm has been constructed that simulates the response of the LECP instrument to very high particle intensities. This algorithm has allowed for the extraction of the hot plasma parameters in the Jovian regions of interest. The hot plasma components discussed here dominate over other components with respect to such high-order moments as the plasma pressures and energy intensities. Our findings include the following items. (1) Radial pressure gradients change from positive (antiplanetward) to negative as one moves outward past about 7.3 RJ. While the observed hot plasma distributions will impede the radial transport, via centrifugal interchange, of iogenic plasmas throughout the Io plasma torus regions out to 8 RJ, the plasma impoundment concept of Siscoe et al. [1981] for explaining the so-called “ramp” in the flux shell content profile of iogenic plasmas (7.4–7.8 RJ [Bagenal, 1994]) is not supported. (2) We predict a radial ordering for the generation of the aurora, which translates into a latitudinal structure for auroral emissions. Planetward of about 12 RJ, intense aurora (10 ergs/(cm2 s) precipitation) can only be caused by ion precipitation, whereas outside of about 12 RJ such intense aurora can only be caused by electron precipitation. Uncertainties concerning the causes of Jovian aurora may stem in part from failures of some observations to resolve the latitudinal structure that is anticipated here and possibly from changes in the auroral configuration and/or charged particle spectral properties since the Voyager epoch.

[1]  Louis J. Lanzerotti,et al.  Particle Diffusion in the Radiation Belts , 1974 .

[2]  Louis J. Lanzerotti,et al.  Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft , 1981 .

[3]  J. Waite,et al.  Auroral oxygen precipitation at Jupiter , 1995 .

[4]  G. Siscoe,et al.  Centrifugally driven diffusion of iogenic plasma , 1981 .

[5]  Barry H. Mauk,et al.  The magnetosphere of Neptune: Hot plasmas and energetic particles , 1991 .

[6]  T. Owen,et al.  Images of Excited H3+ at the Foot of the lo Flux Tube in Jupiter's Atmosphere , 1993, Science.

[7]  J. Waite,et al.  The precipitation of energetic heavy ions into the upper atmosphere of Jupiter , 1988 .

[8]  D. Strobel,et al.  Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter , 1981 .

[9]  M. Kivelson,et al.  Magnetospheric interchange instability , 1987 .

[10]  J. Blamont,et al.  Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter , 1979, Science.

[11]  R. Baron,et al.  Emission Source Model of Jupiter's H+3Aurorae: A Generalized Inverse Analysis of Images , 1996 .

[12]  B. Sandel,et al.  Radial profiles of ion density and parallel temperature in the Io plasma torus during the Voyager 1 encounter , 1995 .

[13]  C. M. Hammond,et al.  The Jovian Aurora - Electron or ion precipitation? , 1988 .

[14]  S. Krimigis,et al.  Low‐energy charged particle observations in the 5–20 RJ region of the Jovian magnetosphere , 1981 .

[15]  Travis W. Hill,et al.  Rotation driven plasma transport: The coupling of macroscopic motion and microdiffusion , 1989 .

[16]  F. Bagenal Empirical model of the Io plasma torus: Voyager measurements , 1994 .

[17]  R. Thorne Physics of the Jovian Magnetosphere: Microscopic plasma processes in the Jovian magnetosphere , 1983 .

[18]  S. Krimigis,et al.  Hot ions in Jupiter's magnetodisc: A model for Voyager 2 low-energy charged particle measurements , 1995 .

[19]  R Prange,et al.  HST far-ultraviolet imaging of Jupiter during the impacts of comet Shoemaker-Levy 9 , 1995, Science.

[20]  Barry H. Mauk,et al.  The hot plasma and radiation environment of the Uranian magnetosphere , 1987 .

[21]  Barry H. Mauk,et al.  Pressure anisotropy and radial stress balance in the Jovian neutral sheet , 1991 .

[22]  R. Elsner,et al.  ROSAT observations of the Jupiter aurora , 1994 .

[23]  J. D. Sullivan,et al.  The detection of X rays from Jupiter , 1983 .

[24]  L. Lyons Comments on pitch angle diffusion in the radiation belts , 1973 .

[25]  M. Kivelson,et al.  Magnetospheric Interchange Motions , 1989 .

[26]  A. Broadfoot,et al.  Observations of the Jovian UV aurora by Voyager , 1985 .

[27]  A. Cheng,et al.  Radial diffusion and ion partitioning in the IO torus , 1986 .

[28]  D. Stern,et al.  Empirical modeling of the quiet time nightside magnetosphere , 1993 .

[29]  W. I. Axford,et al.  The Low Energy Charged Particle (LECP) experiment on the Voyager spacecraft , 1977 .

[30]  J. H. Waite,et al.  A Remarkable Auroral Event on Jupiter Observed in the Ultraviolet with the Hubble Space Telescope , 1994, Science.

[31]  Louis J. Lanzerotti,et al.  General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft , 1983 .

[32]  J. D. Sullivan,et al.  Ring current impoundment of the Io plasma torus , 1981 .

[33]  S. Krimigis,et al.  Radial force balance within Jupiter's dayside magnetosphere , 1987 .

[34]  J. Gérard,et al.  Hubble Space Telescope Goddard high-resolution spectrograph H2 rotational spectra of Jupiter's aurora , 1994 .

[35]  N. Gehrels,et al.  Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation , 1983 .

[36]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[37]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .