Fast algorithms for maximizing monotone nonsubmodular functions

In recent years, with the more and more researchers studying the problem of maximizing monotone (nonsubmodular) objective functions, the approximation algorithms for this problem have gotten much progress by using some interesting techniques. In this paper, we develop the approximation algorithms for maximizing a monotone function f with generic submodularity ratio $$\gamma $$ subject to certain constraints. Our first result is a simple algorithm that gives a $$(1-e^{-\gamma } -\epsilon )$$ -approximation for a cardinality constraint using $$O(\frac{n}{\epsilon }log\frac{n}{\epsilon })$$ queries to the function value oracle. The second result is a new variant of the continuous greedy algorithm for a matroid constraint. We combine the variant of continuous greedy method with the contention resolution schemes to find a solution with approximation ratio $$(\gamma ^2(1-\frac{1}{e})^2-O(\epsilon ))$$ , and the algorithm makes $$O(rn\epsilon ^{-4}log^2\frac{n}{\epsilon })$$ queries to the function value oracle.

[1]  Eric Balkanski,et al.  Non-monotone Submodular Maximization in Exponentially Fewer Iterations , 2018, NeurIPS.

[2]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[3]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[4]  Tao Sun,et al.  Maximize a monotone function with a generic submodularity ratio , 2021, Theor. Comput. Sci..

[5]  K. Hirata,et al.  Sensor placement minimizing the state estimation mean square error: Performance guarantees of greedy solutions , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[6]  Qizhi Fang,et al.  Parametric monotone function maximization with matroid constraints , 2019, Journal of Global Optimization.

[7]  Morteza Zadimoghaddam,et al.  Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity , 2018, ICML.

[8]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[9]  Eric Balkanski,et al.  An Exponential Speedup in Parallel Running Time for Submodular Maximization without Loss in Approximation , 2018, SODA.

[10]  Niv Buchbinder,et al.  Constrained Submodular Maximization via a Non-symmetric Technique , 2016, Math. Oper. Res..

[11]  Silvio Lattanzi,et al.  Submodular Streaming in All its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity , 2019, ICML.

[12]  Meixia Li,et al.  Non-Submodular Streaming Maximization with Minimum Memory and Low Adaptive Complexity , 2020, AAIM.

[13]  Dachuan Xu,et al.  Greedy Algorithm for Maximization of Non-submodular Functions Subject to Knapsack Constraint , 2019, COCOON.

[14]  Eric Balkanski,et al.  The FAST Algorithm for Submodular Maximization , 2019, ICML.

[15]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[16]  Bernardetta Addis,et al.  Docking of Atomic Clusters Through Nonlinear Optimization , 2004, J. Glob. Optim..

[17]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[18]  Moran Feldman,et al.  Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints , 2020, ICALP.

[19]  Dachuan Xu,et al.  Non-submodular maximization on massive data streams , 2019, J. Glob. Optim..

[20]  Ola Svensson,et al.  The one-way communication complexity of submodular maximization with applications to streaming and robustness , 2020, STOC.

[21]  Moran Feldman,et al.  Constrained Monotone Function Maximization and the Supermodular Degree , 2014, APPROX-RANDOM.

[22]  Abhimanyu Das,et al.  Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection , 2011, ICML.

[23]  Kazuo Murota,et al.  A framework of discrete DC programming by discrete convex analysis , 2015, Math. Program..

[24]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[25]  Biao Huang,et al.  Oil sands extraction plant debottlenecking: an optimization approach , 2018, Optim. Lett..

[26]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[27]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[28]  Huy L. Nguyen,et al.  Submodular Maximization with Nearly-optimal Approximation and Adaptivity in Nearly-linear Time , 2018, SODA.

[29]  Eric Balkanski,et al.  The adaptive complexity of maximizing a submodular function , 2018, STOC.

[30]  Niv Buchbinder,et al.  Deterministic Algorithms for Submodular Maximization Problems , 2016, SODA.

[31]  Jeff A. Bilmes,et al.  A Submodular-supermodular Procedure with Applications to Discriminative Structure Learning , 2005, UAI.

[32]  Jan Vondrák,et al.  Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature , 2017, Math. Oper. Res..

[33]  Panos M. Pardalos,et al.  Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC programming , 2018, Mathematical Programming.

[34]  Jan Vondrák,et al.  Optimal approximation for submodular and supermodular optimization with bounded curvature , 2013, SODA.

[35]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[36]  Andreas Krause,et al.  Distributed Submodular Maximization: Identifying Representative Elements in Massive Data , 2013, NIPS.

[37]  Ding-Zhu Du,et al.  Maximize a Monotone Function with a Generic Submodularity Ratio , 2019, AAIM.

[38]  Jan Vondr Submodularity and Curvature: The Optimal Algorithm , 2010 .

[39]  Yanjun Jiang,et al.  Streaming algorithm for maximizing a monotone non-submodular function under d-knapsack constraint , 2020, Optim. Lett..

[40]  My T. Thai,et al.  Fast Maximization of Non-Submodular, Monotonic Functions on the Integer Lattice , 2018, ICML.

[41]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[42]  Andreas Krause,et al.  Guarantees for Greedy Maximization of Non-submodular Functions with Applications , 2017, ICML.

[43]  J. Vondrák,et al.  Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes , 2014 .

[44]  Alexandros G. Dimakis,et al.  Restricted Strong Convexity Implies Weak Submodularity , 2016, The Annals of Statistics.

[45]  Ding-Zhu Du,et al.  Set Function Optimization , 2018, Journal of the Operations Research Society of China.

[46]  Uriel Feige,et al.  Welfare maximization and the supermodular degree , 2013, ITCS '13.

[47]  Rishabh K. Iyer,et al.  Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications , 2012, UAI.

[48]  Alkis Gotovos,et al.  Non-Monotone Adaptive Submodular Maximization , 2015, IJCAI.

[49]  Andreas Krause,et al.  Streaming submodular maximization: massive data summarization on the fly , 2014, KDD.

[50]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[51]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..