Motion artifacts in optical coherence tomography with frequency-domain ranging.

We describe results of theoretical and experimental investigations of artifacts that can arise in spectral-domain optical coherence tomography (SD-OCT) and optical frequency domain imaging (OFDI) as a result of sample or probe beam motion. While SD-OCT and OFDI are based on similar spectral interferometric principles, the specifics of motion effects are quite different because of distinct signal acquisition methods. These results provide an understanding of motion artifacts such as signal fading, spatial distortion and blurring, and emphasize the need for fast image acquisition in biomedical applications.

[1]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[2]  Joseph M. Schmitt,et al.  MODEL OF OPTICAL COHERENCE TOMOGRAPHY OF HETEROGENEOUS TISSUE , 1997 .

[3]  R. Ulrich,et al.  Optical frequency domain reflectometry in single‐mode fiber , 1981 .

[4]  B E Bouma,et al.  Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. , 1996, Optics letters.

[5]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[6]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[7]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[8]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[9]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[10]  J. Izatt,et al.  High-resolution endoscopic imaging of the GI tract using optical coherence tomography. , 2000, Gastrointestinal endoscopy.

[11]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[12]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[13]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[14]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[15]  E. Halpern,et al.  Quantification of Macrophage Content in Atherosclerotic Plaques by Optical Coherence Tomography , 2003, Circulation.

[16]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[17]  R. Alfidi,et al.  The effects of biological motion on CT resolution. , 1976, AJR. American journal of roentgenology.

[18]  J. Schmitt,et al.  Speckle in optical coherence tomography. , 1999, Journal of biomedical optics.

[19]  S G Coleman,et al.  Transplant Rejection , 1999, Drugs in R&D.

[20]  E. Brinkmeyer,et al.  High-resolution OCDR in dispersive waveguides , 1990 .

[21]  C. Seiler,et al.  Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection , 2001, Heart.

[22]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[23]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[24]  A. Fercher,et al.  Wavelength-tuning interferometry of intraocular distances. , 1997, Applied optics.

[25]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[26]  T. Mitsui,et al.  Dynamic Range of Optical Reflectometry with Spectral Interferometry , 1999 .

[27]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[28]  A Fenster,et al.  In vitro simulation and quantification of temporal jitter artifacts in ECG-gated dynamic three-dimensional echocardiography. , 2001, Ultrasound in medicine & biology.

[29]  J. Fujimoto,et al.  High-speed optical coherence domain reflectometry. , 1992, Optics letters.