Ballistic performance of composite metal foam against large caliber threats

[1]  A. Rabiei,et al.  A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches , 2018, Composite Structures.

[2]  Development and validation of a numerical model for the simulation of high-velocity impacts on advanced composite armor systems , 2018 .

[3]  Zhiwei Shen,et al.  Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems , 2017 .

[4]  T. Fras,et al.  Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62 mm × 51 AP projectiles , 2017 .

[5]  M. Iqbal,et al.  Ballistic Performance of Bilayer Alumina/Aluminium and Silicon Carbide/Aluminium Armours ☆ , 2017 .

[6]  D. Shockey,et al.  Effect of composite covering on ballistic fracture damage development in ceramic plates , 2017 .

[7]  G. Weng,et al.  Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic , 2016 .

[8]  S. J. Cimpoeru,et al.  The ballistic performance of an ultra-high hardness armour steel: An experimental investigation , 2016 .

[9]  N. Bhatnagar,et al.  Ballistic impact response of Kevlar® reinforced thermoplastic composite armors , 2016 .

[10]  Tore Børvik,et al.  Influence of fragmentation on the capacity of aluminum alloy plates subjected to ballistic impact , 2016 .

[11]  A. Rabiei,et al.  High strain rate behavior of composite metal foams , 2015 .

[12]  N. Gupta,et al.  The characterization and ballistic evaluation of mild steel , 2015 .

[13]  A. Rabiei,et al.  Ballistic Performance of a Composite Metal Foam-ceramic Armor System , 2014 .

[14]  M. Joshi,et al.  An energy-based model for ballistic impact analysis of ceramic-composite armors , 2013 .

[15]  A. Rabiei,et al.  Effect of various parameters on properties of composite steel foams under variety of loading rates , 2013 .

[16]  Mica Grujicic,et al.  The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor , 2012 .

[17]  T. Demir,et al.  Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers , 2011 .

[18]  A. Rabiei,et al.  Effect of processing parameters on the microstructure and mechanical properties of Al–steel composite foam , 2011, Journal of Materials Science.

[19]  Subramani Sockalingam,et al.  Numerical simulation of ceramic composite armor subjected to ballistic impact , 2010 .

[20]  E. Medvedovski Ballistic performance of armour ceramics: Influence of design and structure. Part 1 , 2010 .

[21]  Eugene Medvedovski,et al.  Ballistic performance of armour ceramics: Influence of design and structure. Part 2 , 2010 .

[22]  Afsaneh Rabiei,et al.  Bending Properties of Al-Steel and Steel-Steel Composite Metal Foams , 2010 .

[23]  Afsaneh Rabiei,et al.  Evaluation of modulus of elasticity of composite metal foams by experimental and numerical techniques , 2010 .

[24]  A. Rabiei,et al.  Fatigue in aluminum–steel and steel–steel composite foams , 2009 .

[25]  B. Harris,et al.  Constitutive Model Constants for Al7075-T651 and Al7075-T6 , 2009 .

[26]  A. Rabiei,et al.  A comparison of composite metal foam's properties and other comparable metal foams , 2009 .

[27]  G. R. Johnson,et al.  An improved computational constitutive model for brittle materials , 2008 .

[28]  A. Rabiei,et al.  Composite metal foams processed through powder metallurgy , 2008 .

[29]  A. Rabiei,et al.  New Composite Metal Foams under Compressive Cyclic Loadings , 2007 .

[30]  Ashok Bhatnagar,et al.  Lightweight Ballistic Composites : Military and Law-Enforcement Applications , 2006 .

[31]  A. Arias,et al.  The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study , 2005 .

[32]  N. K. Naik,et al.  Composite structures under ballistic impact , 2004 .

[33]  P. Lundberg Interface Defeat and Penetration: Two Modes of Interaction between Metallic Projectiles and Ceramic Targets , 2004 .

[34]  Yo-Han Yoo,et al.  Analysis of ceramic/metal armour systems , 2001 .

[35]  S. Sánchez-Sáez,et al.  Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact , 2000 .

[36]  G. R. Johnson,et al.  Response of boron carbide subjected to large strains, high strain rates, and high pressures , 1999 .

[37]  V. Sánchez-Gálvez,et al.  A new analytical model to simulate impact onto ceramic/composite armors , 1998 .

[38]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[39]  W. Gust,et al.  Dynamic Yield Strengths of B4C, BeO, and Al2O3 Ceramics , 1971 .