Binding of Cu(II) complexes of oxicam NSAIDs to alternating AT and homopolymeric AT sequences: differential response to variation in backbone structure

[1]  R.E. Lee Handbook of Metal-ligand Interactions in Biological fluids , 2012 .

[2]  I. Turel,et al.  Interaction of copper(II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: synthesis, structure, DNA- and albumin-binding. , 2011, Journal of inorganic biochemistry.

[3]  M. Sarkar,et al.  A traditional painkiller as a probe for microheterogeneity in 1-propanol–water mixtures , 2010 .

[4]  Jun Yu,et al.  Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. , 2010, Cancer letters.

[5]  M. Jakupec,et al.  New platinum-oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro. , 2010, Journal of inorganic biochemistry.

[6]  G. Tamasi Metal-Oxicam Coordination Compounds: Structure, Biological Activity and Strategies for Administration~!2009-12-08~!2010-01-14~!2010-03-25~! , 2010 .

[7]  S. Chimenti,et al.  Topical Treatment of Actinic Keratoses with Piroxicam 1% Gel , 2010, American Journal of Clinical Dermatology.

[8]  J. Hancock,et al.  The Nonsteroidal Anti-Inflammatory Drug Indomethacin Induces Heterogeneity in Lipid Membranes: Potential Implication for Its Diverse Biological Action , 2010, PloS one.

[9]  S. Keller Polyhedron , 2020, Encyclopedia of Database Systems.

[10]  P. A. Lay,et al.  Inhibition of experimental colorectal cancer and reduction in renal and gastrointestinal toxicities by copper–indomethacin in rats , 2010, Cancer Chemotherapy and Pharmacology.

[11]  C. Patrono,et al.  Nonsteroidal antiinflammatory drugs: past, present and future. , 2009, Pharmacological research.

[12]  E. White,et al.  Association of Nonsteroidal Anti-Inflammatory Drugs with Lung Cancer: Results from a Large Cohort Study , 2009, Cancer Epidemiology Biomarkers & Prevention.

[13]  Jaroslav Kypr,et al.  Circular dichroism and conformational polymorphism of DNA , 2009, Nucleic acids research.

[14]  E. Segal,et al.  Poly(da:dt) Tracts: Major Determinants of Nucleosome Organization This Review Comes from a Themed Issue on Protein-nucleic Acid Interactions Edited , 2022 .

[15]  J. An,et al.  Sulindac Sulfide Differentially Induces Apoptosis in Smac-Proficient and -Deficient Human Colon Cancer Cells. , 2009, Molecular and cellular pharmacology.

[16]  T. Hattori,et al.  Chemoprevention of glandular stomach carcinogenesis through duodenogastric reflux in rats by a COX‐2 inhibitor , 2008, International journal of cancer.

[17]  M. Casolaro,et al.  Release studies from smart hydrogels as carriers for piroxicam and copper(II)-oxicam complexes as anti-inflammatory and anti-cancer drugs. X-ray structures of new copper(II)-piroxicam and -isoxicam complex molecules. , 2008, Journal of inorganic biochemistry.

[18]  H. Chakraborty,et al.  Membrane fusion: a new function of non steroidal anti-inflammatory drugs. , 2008, Biophysical chemistry.

[19]  C. Dendrinou-Samara,et al.  Synthesis, structure and interactions with DNA of novel tetranuclear, [Mn4(II/II/II/IV)] mixed valence complexes. , 2008, Journal of inorganic biochemistry.

[20]  H. Chakraborty,et al.  Multiple functions of generic drugs: future perspectives of aureolic acid group of anti-cancer antibiotics and non-steroidal anti-inflammatory drugs. , 2008, Mini reviews in medicinal chemistry.

[21]  Geise Ribeiro,et al.  Diruthenium(II, III) complexes of ibuprofen, aspirin, naproxen and indomethacin non-steroidal anti-inflammatory drugs: Synthesis, characterization and their effects on tumor-cell proliferation , 2008 .

[22]  M. Zayed,et al.  FTIR, magnetic, mass spectral, XRD and thermal studies of metal chelates of tenoxicam , 2007 .

[23]  Michael B Hursthouse,et al.  Unusual coordinating behavior by three non-steroidal anti-inflammatory drugs from the oxicam family towards copper(II). Synthesis, X-ray structure for copper(II)-isoxicam, -meloxicam and -cinnoxicam-derivative complexes, and cytotoxic activity for a copper(II)-piroxicam complex. , 2007, Journal of inorganic biochemistry.

[24]  Nayoung Kim,et al.  The Anti-Cancer Effect of COX-2 Inhibitors on Gastric Cancer Cells , 2007, Digestive Diseases and Sciences.

[25]  N. Degtyareva,et al.  Hydration changes accompanying the binding of minor groove ligands with DNA. , 2007, Biophysical journal.

[26]  Y. Shyr,et al.  Nonsteroidal Anti-Inflammatory Drugs and Lung Cancer Risk: A Population-Based Case Control Study , 2007, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[27]  H. Groen,et al.  Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. , 2007, Critical reviews in oncology/hematology.

[28]  J. Gutkind,et al.  Cyclooxygenase-2 and Colorectal Cancer Chemoprevention: The β-Catenin Connection , 2006 .

[29]  M. Sarkar,et al.  Direct binding of Cu(II)-complexes of oxicam NSAIDs with DNA backbone. , 2006, Journal of inorganic biochemistry.

[30]  Zao-ying Li,et al.  Binding and photocleavage of cationic porphyrin-phenylpiperazine hybrids to DNA. , 2006, Biophysical chemistry.

[31]  Jeannette Bigler,et al.  Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics , 2006, Nature Reviews Cancer.

[32]  G. Psomas,et al.  Mononuclear metal complexes with piroxicam: synthesis, structure and biological activity. , 2005, Journal of inorganic biochemistry.

[33]  P. Kogner,et al.  NSAIDs in neuroblastoma therapy. , 2005, Cancer letters.

[34]  S. Baek,et al.  Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene. , 2004, Biochemical and biophysical research communications.

[35]  G. Gehad,et al.  Preparation and spectroscopic characterisation of metal complexes of piroxicam , 2004 .

[36]  M. Zayed,et al.  Structure investigation, spectral, thermal, X-ray and mass characterization of piroxicam and its metal complexes. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[37]  C. Rao,et al.  NSAIDs and chemoprevention. , 2004, Current cancer drug targets.

[38]  Cancer Epidemiol Biomarkers Prev , 2004 .

[39]  V. Steele,et al.  Piroxicam selectively inhibits the growth of premalignant and malignant human oral cell lines by limiting their progression through the S phase and reducing the levels of cyclins and AP‐1 , 2003, International journal of cancer.

[40]  S. Lippard,et al.  New metal complexes as potential therapeutics. , 2003, Current opinion in chemical biology.

[41]  Suman Das,et al.  Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A3. , 2003, Bioorganic & medicinal chemistry.

[42]  R. Cini,et al.  Synthesis, X-ray structural characterization and solution studies of metal complexes containing the anti-inflammatory drugs meloxicam and tenoxicam , 2003 .

[43]  K. Subbaramaiah,et al.  Cyclooxygenase 2: a molecular target for cancer prevention and treatment. , 2003, Trends in pharmacological sciences.

[44]  P. A. Lay,et al.  Gastrointestinal toxicity, antiinflammatory activity, and superoxide dismutase activity of copper and zinc complexes of the antiinflammatory drug indomethacin. , 2003, Chemical research in toxicology.

[45]  P. A. Lay,et al.  Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized , 2002 .

[46]  P. Schirmacher,et al.  Proapoptotic and antiproliferative potential of selective cyclooxygenase‐2 inhibitors in human liver tumor cells , 2002, Hepatology.

[47]  B. Bhattacharyya,et al.  Interaction of mithramycin and chromomycin A3 with d(TAGCTAGCTA)2: Role of sugars in antibiotic-DNA recognition , 2002 .

[48]  R. Cini,et al.  Synthesis, X-ray structure and molecular modelling analysis of cobalt(II), nickel(II), zinc(II) and cadmium(II) complexes of the widely used anti-inflammatory drug meloxicam , 2002 .

[49]  Michael J Thun,et al.  Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. , 2002, Journal of the National Cancer Institute.

[50]  S. Hoffmann,et al.  DNA-binding of drugs used in medicinal therapies. , 2002, Current medicinal chemistry.

[51]  B. Boman,et al.  Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. , 2001, Cancer research.

[52]  Samuel Premilat,et al.  A new D-DNA form of poly(dA-dT).poly(dA-dT): an A-DNA type structure with reversed Hoogsteen pairing , 2001, European Biophysics Journal.

[53]  Vadim V. Demidov,et al.  Nucleic Acids: Structures, Properties and Functions , 2001 .

[54]  R. Cini Anti-Inflammatory Compounds as Ligands in Metal Complexes as Revealed in X-Ray Structural Studies , 2000 .

[55]  M. Saraste,et al.  FEBS Lett , 2000 .

[56]  J. Lown,,et al.  Synthetic DNA minor groove-binding drugs. , 1999, Pharmacology & therapeutics.

[57]  S. Ritland,et al.  Chemoprevention of intestinal adenomas in the ApcMin mouse by piroxicam: kinetics, strain effects and resistance to chemosuppression. , 1999, Carcinogenesis.

[58]  M. Clynes,et al.  Enhancement of chemotherapeutic drug toxicity to human tumour cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). , 1998, European journal of cancer.

[59]  R. Cini,et al.  Synthesis of platinum(II)–piroxicam compounds. Crystal structure of trans-dichloro(η2-ethene)(piroxicam)platinum(II)‡ , 1998 .

[60]  M. Manfait,et al.  Aspirin‐DNA interaction studied by FTIR and laser Raman difference spectroscopy , 1996, FEBS letters.

[61]  A M Gronenborn,et al.  Intercalation, DNA Kinking, and the Control of Transcription , 1996, Science.

[62]  R. Cini Synthesis, crystal structure and molecular orbital investigation of the first platinum complex of piroxicam , 1996 .

[63]  P. Aich,et al.  Role of magnesium ion in mithramycin-DNA interaction: binding of mithramycin-Mg2+ complexes with DNA. , 1995, Biochemistry.

[64]  R. Basosi,et al.  Oxygen Radical Scavenger Activity, EPR, NMR, Molecular Mechanics and Extended-Hückel Molecular Orbital Investigation of the Bis(Piroxicam)Copper(II) Complex , 1995, Metal-based drugs.

[65]  M. Sporn Chemoprevention of cancer. , 1993, Lancet.

[66]  R. Dickerson,et al.  Alternative structures for alternating poly(dA-dT) tracts: the structure of the B-DNA decamer C-G-A-T-A-T-A-T-C-G , 1992 .

[67]  J. Veal,et al.  DAPI (4',6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. , 1992, Biochemistry.

[68]  C. Rossi,et al.  Metal complexes of the antiinflammatory drug piroxicam , 1990 .

[69]  R. L. Jones,et al.  DNA sequence dependent binding modes of 4',6-diamidino-2-phenylindole (DAPI). , 1990, Biochemistry.

[70]  J. Sorenson,et al.  Copper complexes offer a physiological approach to treatment of chronic diseases. , 1989, Progress in medicinal chemistry.

[71]  Y. Muto,et al.  Factors affecting the magnetic properties of dimeric copper(II) complexes , 1988 .

[72]  K. Breslauer,et al.  Enthalpy-entropy compensations in drug-DNA binding studies. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Gawthorne,et al.  Copper in animals and man , 1987 .

[74]  G. Manzini,et al.  Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids. , 1983, Nucleic acids research.

[75]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[76]  Sanat K. Dhar,et al.  Metal Ions in Biological Systems , 1973, Advances in Experimental Medicine and Biology.

[77]  H. J. Li,et al.  Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. , 1969, Journal of molecular biology.

[78]  W. Gardner,et al.  Carcinogenesis , 1961, The Yale Journal of Biology and Medicine.