Sign rank versus VC dimension

This work studies the maximum possible sign rank of $N \times N$ sign matrices with a given VC dimension $d$. For $d=1$, this maximum is {three}. For $d=2$, this maximum is $\tilde{\Theta}(N^{1/2})$. For $d >2$, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an $O(N/\log(N))$ multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the $N \times N$ adjacency matrix of a $\Delta$ regular graph with a second eigenvalue of absolute value $\lambda$ and $\Delta \leq N/2$. We show that the sign rank of the signed version of this matrix is at least $\Delta/\lambda$. We use this connection to prove the existence of a maximum class $C\subseteq\{\pm 1\}^N$ with VC dimension $2$ and sign rank $\tilde{\Theta}(N^{1/2})$. This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.

[1]  Hans Ulrich Simon,et al.  On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes , 2006, Theor. Comput. Sci..

[2]  A. Razborov Communication Complexity , 2011 .

[3]  Heinz Luneburg Projektive Geometrie , 2011, 1106.5691.

[4]  Alexander A. Sherstov Halfspace Matrices , 2007, Computational Complexity Conference.

[5]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[6]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[7]  Benjamin I. P. Rubinstein,et al.  A Geometric Approach to Sample Compression , 2009, J. Mach. Learn. Res..

[8]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[9]  Satyanarayana V. Lokam Complexity Lower Bounds using Linear Algebra , 2009, Found. Trends Theor. Comput. Sci..

[10]  J. Komlos,et al.  Almost tight bounds for $\epsilon$-nets , 1992 .

[11]  Jirí Matousek,et al.  Intersection graphs of segments and $\exists\mathbb{R}$ , 2014, ArXiv.

[12]  Noga Alon,et al.  Eigenvalues, Expanders and Superconcentrators (Extended Abstract) , 1984, FOCS.

[13]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[14]  Manfred K. Warmuth,et al.  Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 1995, Machine Learning.

[15]  Alexander A. Sherstov Communication Complexity Under Product and Nonproduct Distributions , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[16]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[17]  Alexander A. Razborov,et al.  The Sign-Rank of AC0 , 2010, SIAM J. Comput..

[18]  Ding‐Zhu Du,et al.  Wiley Series in Discrete Mathematics and Optimization , 2014 .

[19]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[20]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[21]  Noga Alon,et al.  The structure of almost all graphs in a hereditary property , 2009, J. Comb. Theory B.

[22]  Emo Welzl,et al.  Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..

[23]  Noam Nisan,et al.  On Randomized One-round Communication Complexity , 1995, STOC '95.

[24]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[25]  Noga Alon,et al.  Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..

[26]  Vojtech Rödl,et al.  Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[27]  Peter Keevash The existence of designs , 2014, 1401.3665.

[28]  Ronen Basri,et al.  Visibility constraints on features of 3D objects , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[30]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[31]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[32]  Adam R. Klivans,et al.  Learning DNF in time 2 Õ(n 1/3 ) . , 2001, STOC 2001.

[33]  Bernard Chazelle,et al.  Quasi-optimal range searching in spaces of finite VC-dimension , 1989, Discret. Comput. Geom..

[34]  Troy Lee,et al.  An Approximation Algorithm for Approximation Rank , 2008, 2009 24th Annual IEEE Conference on Computational Complexity.

[35]  Satyanarayana V. Lokam,et al.  Relations Between Communication Complexity, Linear Arrangements, and Computational Complexity , 2001, FSTTCS.

[36]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[37]  Amey Bhangale,et al.  The complexity of computing the minimum rank of a sign pattern matrix , 2015, ArXiv.

[38]  Hans Ulrich Simon,et al.  Estimating the Optimal Margins of Embeddings in Euclidean Half Spaces , 2004, Machine Learning.

[39]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[40]  David Haussler,et al.  Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension , 1986, STOC '86.

[41]  Jirí Matousek,et al.  Discrepancy and approximations for bounded VC-dimension , 1993, Comb..

[42]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[43]  Hans Ulrich Simon,et al.  Recursive Teaching Dimension, Learning Complexity, and Maximum Classes , 2010, ALT.

[44]  Jürgen Richter-Gebert,et al.  Mnev's Universality Theorem revisited , 1995 .

[45]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.

[46]  Hans Ulrich Simon,et al.  Recursive teaching dimension, VC-dimension and sample compression , 2014, J. Mach. Learn. Res..

[47]  A. Beutelspacher,et al.  Projective Geometrie : Von den Grundlagen bis zu den Anwendungen , 1992 .

[48]  Hans-Jürgen Bandelt,et al.  Combinatorics of lopsided sets , 2006, Eur. J. Comb..

[49]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[50]  Béla Bollobás,et al.  Defect Sauer Results , 1995, J. Comb. Theory A.

[51]  Shai Ben-David,et al.  Localization vs. Identification of Semi-Algebraic Sets , 1993, COLT '93.

[52]  Emo Welzl,et al.  Partition trees for triangle counting and other range searching problems , 1988, SCG '88.

[53]  Rocco A. Servedio,et al.  Learning DNF in time 2Õ(n1/3) , 2004, J. Comput. Syst. Sci..

[54]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[55]  Noga Alon,et al.  Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension , 1987, SCG '87.

[56]  Nathan Linial,et al.  Learning Complexity vs. Communication Complexity , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[57]  Santosh S. Vempala,et al.  An algorithmic theory of learning: Robust concepts and random projection , 1999, Machine Learning.

[58]  Manfred K. Warmuth,et al.  Unlabeled Compression Schemes for Maximum Classes, , 2007, COLT.

[59]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[60]  Jürgen Forster A linear lower bound on the unbounded error probabilistic communication complexity , 2002, J. Comput. Syst. Sci..

[61]  Peter W. Shor,et al.  Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.

[62]  Peter Frankl,et al.  Traces of antichains , 1989, Graphs Comb..

[63]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[64]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[65]  Shai Ben-David,et al.  Limitations of Learning Via Embeddings in Euclidean Half Spaces , 2003, J. Mach. Learn. Res..

[66]  David Newnham Shattering news. , 2016, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[67]  Ute Rosenbaum,et al.  Projective Geometry: From Foundations to Applications , 1998 .

[68]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[69]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[70]  Shay Moran,et al.  Labeled Compression Schemes for Extremal Classes , 2015, ALT.

[71]  Peter L. Bartlett,et al.  Bounding Embeddings of VC Classes into Maximum Classes , 2014, ArXiv.

[72]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[73]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[74]  Janos Simon,et al.  Probabilistic Communication Complexity , 1986, J. Comput. Syst. Sci..

[75]  Noga Alon,et al.  A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.

[76]  Alexander A. Razborov,et al.  The Sign-Rank of AC^O , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.