Periodic D0L Languages

Abstract Periodic D0L systems and languages are defined, and periodicity is shown to be a decidable property of D0L systems. The fundamental tools used are recent results on the representation of stationary ω-words (Head and Lando, 1986) and the decidability of ultimate periodicity of ω-words (Harju and Linna, 1986; Pansiot, 1986). The relation of D0L periodicity to local catenativity and to n -codes is examined.

[1]  Arto Salomaa Jewels of formal language theory , 1981 .

[2]  Tom Head,et al.  Code Properties and Homomorphisms of D0L Systems , 1985, Theor. Comput. Sci..

[3]  Tom Head,et al.  Finite DOL Languages and Codes , 1982, Theor. Comput. Sci..

[4]  Tom Head,et al.  Fixed and Stationary ω —Words and ω —Languages , 1986 .

[5]  Jean-Jacques Pansiot,et al.  Decidability of Periodicity for Infinite Words , 1986, RAIRO Theor. Informatics Appl..

[6]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[7]  Tero Harju,et al.  On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..