Effect of asynchronous updating on the stability of cellular automata

Abstract Although cellular automata (CAs) were conceptualized as utter discrete mathematical models in which the states of all their spatial entities are updated simultaneously at every consecutive time step, i.e. synchronously, various CA-based models that rely on so-called asynchronous update methods have been constructed in order to overcome the limitations that are tied up with the classical way of evolving CAs. So far, only a few researchers have addressed the consequences of this way of updating on the evolved spatio-temporal patterns, and the reachable stationary states. In this paper, we exploit Lyapunov exponents to determine to what extent the stability of the rules within a family of totalistic CAs is affected by the underlying update method. For that purpose, we derive an upper bound on the maximum Lyapunov exponent of asynchronously iterated CAs, and show its validity, after which we present a comparative study between the Lyapunov exponents obtained for five different update methods, namely one synchronous method and four well-established asynchronous methods. It is found that the stability of CAs is seriously affected if one of the latter methods is employed, whereas the discrepancies arising between the different asynchronous methods are far less pronounced and, finally, we discuss the repercussions of our findings on the development of CA-based models.

[1]  Shih Ching Fu,et al.  Epidemic Modelling Using Cellular Automata , 2003 .

[2]  M. Shereshevsky Lyapunov exponents for one-dimensional cellular automata , 1992 .

[3]  T. Reichenbach,et al.  Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games , 2007, Nature.

[4]  L. D. de Pillis,et al.  A cellular automata model of tumor-immune system interactions. , 2006, Journal of theoretical biology.

[5]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[6]  Nazim Fatès,et al.  Critical phenomena in cellular automata: perturbing the update, the transitions, the topology , 2010 .

[7]  M. Courbage,et al.  Space-Time Directional Lyapunov Exponents for Cellular Automata , 2006, nlin/0603058.

[8]  S. Ruffo,et al.  Damage spreading and Lyapunov exponents in cellular automata , 1992 .

[9]  Stefania Bandini,et al.  What Do We Mean by Asynchronous CA? A Reflection on Types and Effects of Asynchronicity , 2010, ACRI.

[10]  Wenzhong Shi,et al.  Development of Voronoi-based cellular automata -an integrated dynamic model for Geographical Information Systems , 2000, Int. J. Geogr. Inf. Sci..

[11]  Andreas Flache,et al.  Do Irregular Grids make a Difference? Relaxing the Spatial Regularity Assumption in Cellular Models of Social Dynamics , 2001, J. Artif. Soc. Soc. Simul..

[12]  J J Heijnen,et al.  Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. , 1998, Biotechnology and bioengineering.

[13]  Ruth J. Doran,et al.  Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model. , 2005, Preventive veterinary medicine.

[14]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  H. Blok,et al.  Synchronous versus asynchronous updating in the ''game of Life'' , 1999 .

[16]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[17]  B. Chopard,et al.  Cellular automata model of car traffic in a two-dimensional street network , 1996 .

[18]  F. Peper,et al.  Computation by Asynchronously Updating Cellular Automata , 2004 .

[19]  Graeme D. Ruxton,et al.  The need for biological realism in the updating of cellular automata models , 1998 .

[20]  B. De Baets,et al.  On the topological sensitivity of cellular automata. , 2011, Chaos.

[21]  Maurice Courbage,et al.  On Lyapunov Exponents for Cellular Automata , 2009, J. Cell. Autom..

[22]  Bernard De Baets,et al.  Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. , 2010, Chaos.

[23]  Vitor V. Lopes,et al.  Modelling supercooling in frozen strawberries: Experimental analysis, cellular automation and inverse problem methodology , 2007 .

[24]  J. Shay,et al.  Asynchronous replication timing of telomeres at opposite arms of mammalian chromosomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K.-C. Chou,et al.  Using cellular automata to generate image representation for biological sequences , 2005, Amino Acids.

[26]  Joel L. Schiff,et al.  Cellular Automata: A Discrete View of the World (Wiley Series in Discrete Mathematics & Optimization) , 2007 .

[27]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[28]  P. Tisseur Cellular automata and Lyapunov exponents , 2000, math/0312136.

[29]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[30]  Olga L. Bandman,et al.  Parallel Composition of Asynchronous Cellular Automata Simulating Reaction Diffusion Processes , 2010, ACRI.

[31]  Olga L. Bandman,et al.  Using cellular automata for porous media simulation , 2011, The Journal of Supercomputing.

[32]  L. Berec Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis , 2002 .

[33]  Giancarlo Mauri,et al.  A Study on the Automatic Generation of Asynchronous Cellular Automata Rules by Means of Genetic Algorithms , 2010, ACRI.

[34]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[35]  A. Martín del Rey,et al.  Modelling forest fire spread using hexagonal cellular automata , 2007 .

[36]  Franco Bagnoli,et al.  SYNCHRONIZATION AND MAXIMUM LYAPUNOV EXPONENTS OF CELLULAR AUTOMATA , 1998, cond-mat/9809275.

[37]  David G. Green,et al.  Ordered asynchronous processes in multi-agent systems , 2005 .

[38]  Constantinos I. Siettos,et al.  A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990 , 2008, Appl. Math. Comput..

[39]  Bernard Testa,et al.  Cellular automata models of biochemical phenomena , 1999, Future Gener. Comput. Syst..

[40]  Laurent Lucas,et al.  SoDA project: A simulation of soil surface degradation by rainfall , 2006, Comput. Graph..

[41]  S. D. Gregorio,et al.  Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S 3–hex , 2003 .

[42]  T. Suzudo Spatial pattern formation in asynchronous cellular automata with mass conservation , 2004 .

[43]  Michael Batty,et al.  Cellular Dynamics: Modelling Urban Growth as a Spatial Epidemic , 2001 .

[44]  F. Peper,et al.  Asynchronous game of life , 2004 .

[45]  Ozan K. Tonguz,et al.  Modeling urban traffic: A cellular automata approach , 2009, IEEE Communications Magazine.

[46]  Mark A. Fonstad,et al.  A cellular automata model of surface water flow , 2007 .

[47]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[48]  Bernard De Baets,et al.  Design and parameterization of a stochastic cellular automaton describing a chemical reaction , 2011, J. Comput. Chem..

[49]  Heiko Balzter,et al.  Cellular automata models for vegetation dynamics , 1998 .

[50]  Luca Manzoni Some Formal Properties of Asynchronous Cellular Automata , 2010, ACRI.