Microwave transistor modeling

The first chapter is meant to give a comprehensive overview of the fundamentals, state-of-the-art, challenges, and future trends in the field of high-frequency transistor modeling. Linear, as well as noise and nonlinear operations, are dealt with. The importance of microwave transistor modeling comes from the fact that the transistor is the key component in high-frequency circuits that are at the heart of modern wireless communication systems, such as mobile telephony. We are currently witnessing a proliferation of wireless communication applications and continuous progress in transistor technologies that make high-frequency transistor modeling a hot topic of great interest.

[1]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[2]  A. Raffo,et al.  Waveforms-based large-signal identification of transistor models , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[3]  Christian Fager,et al.  Prediction of IMD in LDMOS transistor amplifiers using a new large-signal model , 2002 .

[4]  W. Kuang,et al.  Microwave AlGaN/GaN HFETs , 2005, IEEE Microwave Magazine.

[5]  D. Delagebeaudeuf,et al.  Two-dimensional electron gas m.e.s.f.e.t. structure , 1980 .

[6]  Diego Marti,et al.  Transistor Modeling: Robust Small-Signal Equivalent Circuit Extraction in Various HEMT Technologies , 2013, IEEE Microwave Magazine.

[7]  W. R. Curtice,et al.  Self-Consistent GaAs FET Models for Amplifier Design and Device Diagnostics , 1984 .

[8]  F. Filicori,et al.  Empirical modeling of low-frequency dispersive effects due to traps and thermal phenomena in III-V FETs , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[9]  Marc Camiade,et al.  Large signal design of broadband monolithic microwave frequency dividers and phase-locked oscillators , 1993 .

[10]  A. Caddemi,et al.  Accurate Multibias Equivalent-Circuit Extraction for GaN HEMTs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[11]  Alina Caddemi,et al.  Temperature effects on DC and small signal RF performance of AlGaAs/GaAs HEMTs , 2006, Microelectron. Reliab..

[12]  J. Verspecht,et al.  Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements , 2005, IEEE Transactions on Microwave Theory and Techniques.

[13]  Giorgio Vannini,et al.  GaN HEMT noise modeling based on 50‐Ω noise factor , 2015 .

[14]  Thomas J. Brazil,et al.  A scalable general-purpose model for microwave FETs including DC/AC dispersion effects , 1997 .

[15]  Peter Russer,et al.  An efficient method for computer aided noise analysis of linear amplifier networks , 1976 .

[16]  Haifeng Sun,et al.  Low-Noise Microwave Performance of 0.1 $\mu$m Gate AlInN/GaN HEMTs on SiC , 2010, IEEE Microwave and Wireless Components Letters.

[18]  P. Colantonio,et al.  An approach to harmonic load- and source-pull measurements for high-efficiency PA design , 2004, IEEE Transactions on Microwave Theory and Techniques.

[19]  R. Quéré,et al.  An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR , 2007, IEEE Transactions on Microwave Theory and Techniques.

[20]  H. Massler,et al.  A simplified broad-band large-signal nonquasi-static table-based FET model , 2000 .

[21]  Jianjun Xu,et al.  Dynamic FET model - DynaFET - for GaN transistors from NVNA active source injection measurements , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[22]  G. Dambrine,et al.  A new method for determining the FET small-signal equivalent circuit , 1988 .

[23]  M. Asif Khan,et al.  High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction , 1993 .

[24]  Giorgio Vannini,et al.  Mathematical approach to large-signal modelling of electron devices , 1991 .

[25]  Ruimin Xu,et al.  An Electrothermal Model for Empirical Large- Signal Modeling of AlGaN/GaN HEMTs Including Self-Heating and Ambient Temperature Effects , 2014, IEEE Transactions on Microwave Theory and Techniques.

[26]  R. S. Pengelly,et al.  A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[27]  G Pailloncy,et al.  Large-Signal Network Analysis Including the Baseband , 2011, IEEE Microwave Magazine.

[28]  Dominique Schreurs,et al.  On the small signal modeling of advanced microwave FETs: A comparative study , 2008 .

[29]  W. Heinrich,et al.  Noise modeling of GaN HEMT devices , 2012, 2012 7th European Microwave Integrated Circuit Conference.

[30]  Alina Caddemi,et al.  Microwave characterization and modeling of packaged HEMTs by a direct extraction procedure down to 30 K , 2006, IEEE Transactions on Instrumentation and Measurement.

[31]  Alina Caddemi,et al.  Source-pull characterization of FinFET noise , 2010, Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2010.

[32]  K.J. Webb,et al.  The influence of transistor nonlinearities on noise properties , 2005, IEEE Transactions on Microwave Theory and Techniques.

[33]  Andrea Ferrero,et al.  Accuracy Evaluation of On-Wafer Load-Pull Measurements , 2000, 55th ARFTG Conference Digest.

[34]  G. Tränkle,et al.  Analysis of the Survivability of GaN Low-Noise Amplifiers , 2007, IEEE Transactions on Microwave Theory and Techniques.

[35]  A. Siligaris,et al.  A new empirical nonlinear model for sub-250 nm channel MOSFET , 2003, IEEE Microwave and Wireless Components Letters.

[36]  J. Wood,et al.  Bias-dependent linear, scalable millimeter-wave FET model , 2000, IMS 2000.

[37]  I. Hunter,et al.  Coupled electrothermal, electromagnetic, and physical modeling of microwave power FETs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[38]  Valeria Vadala,et al.  Millimeter-Wave FET Nonlinear Modelling Based on the Dynamic-Bias Measurement Technique , 2014, IEEE Transactions on Microwave Theory and Techniques.

[39]  Bumman Kim,et al.  The Doherty Power Amplifier: Review of Recent Solutions and Trends , 2015, IEEE Transactions on Microwave Theory and Techniques.

[40]  Dominique Schreurs,et al.  Development of a RF large signal MOSFET model, based on an equivalent circuit, and comparison with the BSIM3v3 compact model , 2002 .

[41]  David E. Root,et al.  Technology Independent Large Signal Non Quasi-Static FET Models by Direct Construction from Automatically Characterized Device Data , 1991, 1991 21st European Microwave Conference.

[42]  Giorgio Vannini,et al.  Nonlinear modeling of LDMOS transistors for high-power FM transmitters , 2014 .

[43]  Fabrizio Bonani,et al.  Physics-based simulation techniques for small- and large-signal device noise analysis in RF applications , 2003 .

[44]  Dominique Schreurs,et al.  Large-Signal Time-Domain Waveform-Based Transistor Modeling , 2013 .

[45]  Earl W. McCune Operating Modes of Dynamic Power Supply Transmitter Amplifiers , 2014 .

[46]  Alessandra Costanzo,et al.  Theoretical and Numerical Design of a Wireless Power Transmission Link With GaN-Based Transmitter and Adaptive Receiver , 2014, IEEE Transactions on Microwave Theory and Techniques.

[47]  Herbert Zirath,et al.  Accurate small-signal modeling of HFET's for millimeter-wave applications , 1996 .

[48]  Walter Ciccognani,et al.  Black‐box noise modeling of GaAs HEMTs under illumination , 2015 .

[49]  Manfred Berroth,et al.  High-frequency equivalent circuit of GaAs FETs for large-signal applications , 1991 .

[50]  N.B. Carvalho,et al.  Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design , 2004, IEEE Transactions on Microwave Theory and Techniques.

[51]  J. Verspecht,et al.  Large-signal network analysis , 2005, IEEE Microwave Magazine.

[52]  T. Kacprzak,et al.  Computer Calculation of Large-Signal GaAs FET Amplifier Characteristics , 1985 .

[53]  Li Shen,et al.  An improved millimeter-wave small-signal modeling approach for HEMTs , 2014 .

[54]  Lester F. Eastman,et al.  Undoped AlGaN/GaN HEMTs for microwave power amplification , 2001 .

[55]  Marco Pirola,et al.  Harmonic Load-Pull Techniques: An Overview of Modern Systems , 2013, IEEE Microwave Magazine.

[56]  Walter Ciccognani,et al.  Polynomial noise modeling of silicon-based GaN HEMTs , 2014 .

[57]  Roger D. Pollard,et al.  Effects of DUT mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques , 2002, IEEE Trans. Instrum. Meas..

[58]  Dominique Schreurs,et al.  Applications of vector non-linear microwave measurements , 2010 .

[59]  Zlatica Marinkovic,et al.  Temperature-dependent models of low-noise microwave transistors based on neural networks , 2005 .

[60]  Giorgio Vannini,et al.  Nonlinear modeling of GaAs pHEMTs for millimeter-wave mixer design , 2015 .

[61]  Geok Ing Ng,et al.  Analytical Modeling of High-Frequency Noise Including Temperature Effects in GaN HEMTs on High-Resistivity Si Substrates , 2010, IEEE Transactions on Electron Devices.

[62]  Dominique Schreurs,et al.  Microwave De-embedding : From Theory to Applications , 2013 .

[63]  Dominique Schreurs,et al.  Construction of behavioral models for microwave devices from time domain large-signal measurements to speed up high-level design simulations , 2003 .

[64]  Antonio Raffo,et al.  GaN HEMT Noise Model Based on Electromagnetic Simulations , 2015, IEEE Transactions on Microwave Theory and Techniques.

[65]  M. Pospieszalski Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence , 1989 .

[66]  Ulrich L. Rohde,et al.  A new and reliable direct parasitic extraction method for MESFETs and HEMTs , 1993, 1993 23rd European Microwave Conference.

[67]  Ulrich L. Rohde,et al.  A general noise de-embedding procedure for packaged two-port linear active devices , 1992 .

[68]  Dominique Schreurs,et al.  A 110-GHz large-signal lookup-table model for InP HEMTs including impact ionization effects , 2003 .

[69]  Fujiang Lin,et al.  FET model parameter extraction based on optimization with multiplane data-fitting and bidirectional search-a new concept , 1994 .

[70]  A. Zarate-de Landa,et al.  Advances in Linear Modeling of Microwave Transistors , 2009, IEEE Microwave Magazine.

[71]  I. Angelov,et al.  Extensions of the Chalmers nonlinear HEMT and MESFET model , 1996 .

[72]  P.A. Traverso,et al.  Accurate pHEMT nonlinear modeling in the presence of low-frequency dispersive effects , 2005, IEEE Transactions on Microwave Theory and Techniques.

[73]  G. Kompa,et al.  Large-Signal Model for AlGaN/GaN HEMTs Accurately Predicts Trapping- and Self-Heating-Induced Dispersion and Intermodulation Distortion , 2007, IEEE Transactions on Electron Devices.

[74]  J. Benedikt,et al.  Nonlinear Data Utilization: From Direct Data Lookup to Behavioral Modeling , 2009, IEEE Transactions on Microwave Theory and Techniques.

[75]  Hongtao Xu,et al.  Influence of epitaxial structure in the noise figure of AlGaN/GaN HEMTs , 2005, IEEE Transactions on Microwave Theory and Techniques.

[76]  A. Caddemi,et al.  A New Millimeter-Wave Small-Signal Modeling Approach for pHEMTs Accounting for the Output Conductance Time Delay , 2008, IEEE Transactions on Microwave Theory and Techniques.

[77]  Angelos Antonopoulos,et al.  Open-source circuit simulation tools for RF compact semiconductor device modelling , 2014 .

[78]  P. J. Tasker,et al.  Frequency scalable large signal transistor behavioral model based on admittance domain formulation , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[79]  Antonio Nanni,et al.  GaN-Based Robust Low-Noise Amplifiers , 2013, IEEE Transactions on Electron Devices.

[80]  W. Curtice A MESFET Model for Use in the Design of GaAs Integrated Circuits , 1980 .

[81]  F. Giannini,et al.  A C-band high efficiency second harmonic tuned hybrid power amplifier in GaN technology , 2006, 2005 European Microwave Conference.

[82]  T. Fjeldly,et al.  Compact Charge-Based Physical Models for Current and Capacitances in AlGaN/GaN HEMTs , 2013, IEEE Transactions on Electron Devices.

[83]  Giovanni Ghione,et al.  Guest Editorial Special Issue on GaN Electronic Devices , 2013 .

[84]  Fadhel M. Ghannouchi,et al.  Enhanced Analysis and Design Method of Concurrent Dual-Band Power Amplifiers With Intermodulation Impedance Tuning , 2013, IEEE Transactions on Microwave Theory and Techniques.

[85]  Antonio Raffo,et al.  Neural approach for temperature‐dependent modeling of GaN HEMTs , 2015 .

[86]  T. Brazil,et al.  An Improved Small-Signal Parameter-Extraction Algorithm for GaN HEMT Devices , 2008, IEEE Transactions on Microwave Theory and Techniques.

[87]  Zheng Zhong,et al.  A 3-D Table-Based Method for Non-Quasi-Static Microwave FET Devices Modeling , 2012, IEEE Transactions on Microwave Theory and Techniques.

[88]  Alina Caddemi,et al.  On wafer‐scaled GaAs HEMTs: Direct and robust small signal modeling up to 50 GHz , 2009 .

[89]  Sam-Dong Kim,et al.  A Gate-Width Scalable Method of Parasitic Parameter Determination for Distributed HEMT Small-Signal Equivalent Circuit , 2013, IEEE Transactions on Microwave Theory and Techniques.

[90]  E. Morifuji,et al.  Technology independent degradation of minimum noise figure due to pad parasitics , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[91]  F. Ramirez,et al.  Analysis of Near-Carrier Phase-Noise Spectrum in Free-Running Oscillators in the Presence of White and Colored Noise Sources , 2010, IEEE Transactions on Microwave Theory and Techniques.

[92]  D. Schreurs,et al.  Nonlinear Dispersive Modeling of Electron Devices Oriented to GaN Power Amplifier Design , 2010, IEEE Transactions on Microwave Theory and Techniques.

[93]  V. A. Monaco,et al.  A nonlinear integral model of electron devices for HB circuit analysis , 1992 .

[94]  Franco Giannini,et al.  Evaluation of GaN technology in power amplifier design , 2009 .

[95]  H. Zirath,et al.  An empirical-table based FET model , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[96]  Patrick Roblin,et al.  Model-Based Nonlinear Embedding for Power-Amplifier Design , 2014, IEEE Transactions on Microwave Theory and Techniques.

[97]  Bart Nauwelaers,et al.  Identification technique of FET model based on vector nonlinear measurements , 2011 .

[98]  J. Rathmell,et al.  Broad-band characterization of FET self-heating , 2005, IEEE Transactions on Microwave Theory and Techniques.

[99]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[100]  A. Caddemi,et al.  HEMT for low noise microwaves: CAD oriented modeling , 1992 .

[101]  Valeria Vadala,et al.  Behavioral Modeling of GaN FETs: A Load-Line Approach , 2014, IEEE Transactions on Microwave Theory and Techniques.

[102]  Dominique Schreurs,et al.  Microwave noise modeling of FinFETs , 2011 .

[103]  Antonio Raffo,et al.  Investigation on the thermal behavior of microwave GaN HEMTs , 2011 .

[104]  M. Pagani,et al.  Nonlinear RF device modelling in the presence of low‐frequency dispersive phenomena , 2006 .

[105]  Yoji Ohashi,et al.  An approach to determining an equivalent circuit for HEMTs , 1995 .

[106]  W. Van Moer,et al.  A large-signal network analyzer: Why is it needed? , 2006, IEEE Microwave Magazine.

[107]  C. Campbell,et al.  GaN Takes the Lead , 2012, IEEE Microwave Magazine.

[108]  Jin-Koo Rhee,et al.  Millimeter-wave small-signal modeling with optimizing sensitive-parameters for metamorphic high electron mobility transistors , 2010 .