BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL

In this paper we prove the existence of global solutions of the haptotaxis model of cancer invasion for arbitrary non-negative initial conditions. Uniform boundedness of the solutions is shown using the method of bounded invariant rectangles applied to the reformulated system of reaction-diffusion equations in divergence form with a diagonal diffusion matrix. Moreover, the analysis of the model shows how the structure of kinetics of the model is related to the growth properties of the solutions and how this growth depends on the ratio of the sensitivity function (describing the size of haptotaxis) and the diffusion coefficient. One of the implications of our analysis is that in the haptotaxis model with a logistic growth term, cell density may exceed the carrying capacity, which is impossible in the classical logistic equation and its reaction-diffusion extension.

[1]  Vincent Calvez,et al.  Mathematical description of concentric demyelination in the human brain: Self-organization models, from Liesegang rings to chemotaxis , 2008, Math. Comput. Model..

[2]  B. Perthame,et al.  a priori estimates for some chemotaxis models and applications to the Cauchy problem , 2005 .

[3]  Lenya Ryzhik,et al.  Traveling waves for the Keller–Segel system with Fisher birth terms , 2008 .

[4]  Helen M. Byrne,et al.  A Mathematical Model of Trophoblast Invasion , 1999 .

[5]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[6]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[7]  J. Sherratt,et al.  A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion , 1999 .

[8]  Jonathan A. Sherratt,et al.  Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model , 1994 .

[9]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[10]  J. Sherratt,et al.  Extracellular matrix-mediated chemotaxis can impede cell migration , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[12]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[13]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[14]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[15]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity , 2006, Networks Heterog. Media.

[16]  Konstantin Khodosevich,et al.  Gene Expression Analysis of In Vivo Fluorescent Cells , 2007, PloS one.

[17]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[18]  A. Marciniak-Czochra,et al.  Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue , 2009, Journal of mathematical biology.

[19]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[20]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[21]  Maria Neuss-Radu,et al.  Derivation and analysis of a system modeling the chemotactic movement of hematopoietic stem cells , 2008, Journal of mathematical biology.

[22]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[23]  R. Natalini,et al.  Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology , 2006 .

[24]  M. Chaplain,et al.  Mathematical modelling of tumour invasion and metastasis , 2000 .

[25]  R. Khonsari,et al.  The Origins of Concentric Demyelination: Self-Organization in the Human Brain , 2007, PloS one.

[26]  Songmu Zheng,et al.  On The Coupled Cahn-hilliard Equations , 1993 .

[27]  A. J. Perumpanani,et al.  Traveling Shock Waves Arising in a Model of Malignant Invasion , 1999, SIAM J. Appl. Math..

[28]  M. Lachowicz MICRO AND MESO SCALES OF DESCRIPTION CORRESPONDING TO A MODEL OF TISSUE INVASION BY SOLID TUMOURS , 2005 .

[29]  Thomas Hillen,et al.  Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..

[30]  Cristian Morales-Rodrigo,et al.  Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours , 2008, Math. Comput. Model..