Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.

[1]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[2]  S. Kodambaka,et al.  Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires , 2009, Science.

[3]  J. Shappir,et al.  Experimental and theoretical analysis of neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy of cultured Aplysia neurons and the recorded field potentials. , 2006, Biosensors & bioelectronics.

[4]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[5]  R. Misra,et al.  Biomaterials , 2008 .

[6]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[7]  Charles M Lieber,et al.  Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics , 2012, Proceedings of the National Academy of Sciences.

[8]  M B Jackson,et al.  Single‐Channel Recording , 1998, Current protocols in neuroscience.

[9]  Areles Molleman,et al.  Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology , 2002 .

[10]  Shlomo Yitzchaik,et al.  Reversible transition of extracellular field potential recordings to intracellular recordings of action potentials generated by neurons grown on transistors. , 2008, Biosensors & bioelectronics.

[11]  Konrad Brockmeier,et al.  Microelectrode arrays: a new tool to measure embryonic heart activity. , 2004, Journal of electrocardiology.

[12]  M. Weiergräber,et al.  Arrhythmia in Isolated Prenatal Hearts after Ablation of the Cav2.3 (α1E) Subunit of Voltage-gated Ca2+ Channels , 2004, Cellular Physiology and Biochemistry.

[13]  Bozhi Tian,et al.  Single crystalline kinked semiconductor nanowire superstructures , 2009, Nature nanotechnology.

[14]  Tal Dvir,et al.  Nanotechnological strategies for engineering complex tissues. , 2020, Nature nanotechnology.

[15]  Bruno Taccardi,et al.  Epicardial and intramural excitation during ventricular pacing: effect of myocardial structure. , 2008, American journal of physiology. Heart and circulatory physiology.

[16]  David C. Martin,et al.  Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays , 2005, Experimental Neurology.

[17]  V. Zhdanov,et al.  Formation of supported membranes from vesicles. , 2000, Physical review letters.

[18]  Charles M Lieber,et al.  Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. , 2012, Nano letters.

[19]  N. Akaike,et al.  Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. , 1994, The Japanese journal of physiology.

[20]  Carmen Bartic,et al.  Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices , 2009, Journal of The Royal Society Interface.

[21]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[22]  R. Carlton Z. , 1904, Industrial and Labor Relations Terms.

[23]  W. Balachandran,et al.  Instrumentation to evaluate neural signal recording properties of micromachined microelectrodes inserted in invertebrate nerve. , 2002, Physiological measurement.

[24]  N. L'Heureux,et al.  Human tissue-engineered blood vessels for adult arterial revascularization , 2007, Nature Medicine.

[25]  Massoud Motamedi,et al.  Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. , 2007, Nano letters.

[26]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[27]  Jr Robert W Stackman The Synaptic Organization of the Brain.Fifth Edition.Edited byGordon M Shepherd.Oxford and New York: Oxford University Press. $95.00 (hardcover); $65.00 (paper). xv + 719 p; ill.; index. ISBN: 0‐19‐515955‐1 (hc); 0‐19‐515956‐X (pb). 2004. , 2005 .

[28]  Charles M Lieber,et al.  Flexible electrical recording from cells using nanowire transistor arrays , 2009, Proceedings of the National Academy of Sciences.

[29]  A. Grant Practical Methods in Cardiovascular Research , 2005 .

[30]  E. Neumann,et al.  Gene transfer into mouse lyoma cells by electroporation in high electric fields. , 1982, The EMBO journal.

[31]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[32]  C. Nguyen,et al.  High spatial resolution single multiwalled carbon nanotube electrode for stimulation, recording, and whole cell voltage clamping of electrically active cells , 2009 .

[33]  C. Grigoropoulos,et al.  Bioelectronic silicon nanowire devices using functional membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[34]  P. Kuo,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1991 .

[35]  Johannes J. Letzkus,et al.  Dendritic patch-clamp recording , 2006, Nature Protocols.

[36]  Leonzio Rizzo,et al.  N , 1857, Notions d'histoire de la traduction.

[37]  D. Cobden,et al.  Tip-modulation scanned gate microscopy. , 2008, Nano letters.

[38]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[39]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[40]  L. Weber,et al.  Transport properties of silicon , 1991 .

[41]  T. Reese,et al.  Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. , 1990, Biophysical journal.

[42]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[43]  Charles M. Lieber,et al.  Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. , 2012, Nature materials.

[44]  J. Pine Recording action potentials from cultured neurons with extracellular microcircuit electrodes , 1980, Journal of Neuroscience Methods.

[45]  O. Prohaska,et al.  Thin-Film Multiple Electrode Probes: Possibilities and Limitations , 1986, IEEE Transactions on Biomedical Engineering.

[46]  J. Shappir,et al.  In-cell recordings by extracellular microelectrodes , 2010, Nature Methods.

[47]  H Herken,et al.  Drug Safety , 1980, Medizinische Klinik.

[48]  Sigurd Wagner,et al.  Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. , 2009, Journal of neurotrauma.

[49]  Elmer S. West From the U. S. A. , 1965 .

[50]  Bozhi Tian,et al.  Outside looking in: nanotube transistor intracellular sensors. , 2012, Nano letters.

[51]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[52]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[53]  F A Auger,et al.  A completely biological tissue‐engineered human blood vessel , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[55]  Claudiu T. Supuran,et al.  Interfering with pH regulation in tumours as a therapeutic strategy , 2011, Nature Reviews Drug Discovery.

[56]  Robert Langer,et al.  Three-dimensional biomaterials for the study of human pluripotent stem cells , 2011, Nature Methods.

[57]  U. Zimmermann,et al.  Dielectric breakdown of cell membranes , 1974, Biophysics of structure and mechanism.

[58]  N. Madias,et al.  Metabolic acidosis: pathophysiology, diagnosis and management , 2010, Nature Reviews Nephrology.

[59]  N J Izzo,et al.  HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Wolfram Klitzsch [K] , 1962, Dendara. Catalogue des dieux et des offrandes.

[61]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.

[63]  Leonard I Zon,et al.  Cell stem cell. , 2007, Cell stem cell.

[64]  J. Shappir,et al.  Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. , 2010, Journal of neurophysiology.

[65]  Simon F. Giszter,et al.  Spinal cord injury: Present and future therapeutic devices and prostheses , 2011, Neurotherapeutics.

[66]  M Krause,et al.  Cardiomyocyte-transistor-hybrids for sensor application. , 2001, Biosensors & bioelectronics.

[67]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[68]  U. Gösele,et al.  Growth, thermodynamics, and electrical properties of silicon nanowires. , 2010, Chemical reviews.

[69]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[70]  Angela Tooker,et al.  Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity , 2008, Journal of Neuroscience Methods.

[71]  D. Bahr,et al.  Characterization of flexible ECoG electrode arrays for chronic recording in awake rats , 2008, Journal of Neuroscience Methods.

[72]  Wei Zhou,et al.  Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials , 2013, Proceedings of the National Academy of Sciences.

[73]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[74]  M Krause,et al.  Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays. , 2001, Journal of pharmacological and toxicological methods.

[75]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[76]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[77]  F. Guilak,et al.  Control of stem cell fate by physical interactions with the extracellular matrix. , 2009, Cell stem cell.

[78]  T. Boland,et al.  Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. , 2009, Biomaterials.

[79]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[80]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[81]  J. Jalife,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1990 .

[82]  David J. Mooney,et al.  Growth Factors, Matrices, and Forces Combine and Control Stem Cells , 2009, Science.

[83]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[84]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[85]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[86]  C. Lieber,et al.  Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays , 2010, IEEE Transactions on Nanotechnology.

[87]  Matthias P. Lutolf,et al.  Designing materials to direct stem-cell fate , 2009, Nature.

[88]  G. Salama,et al.  Optical Imaging of the Heart , 2004, Circulation research.

[89]  Roy G. Gordon,et al.  Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates , 2002, Science.

[90]  Stuart F Cogan,et al.  Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation , 2004, Journal of Neuroscience Methods.

[91]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[92]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[93]  Lisa E. Freed,et al.  Accordion-Like Honeycombs for Tissue Engineering of Cardiac Anisotropy , 2008, Nature materials.

[94]  Peter Fromherz,et al.  Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode , 2008, The European journal of neuroscience.

[95]  G. Stuart,et al.  Is action potential threshold lowest in the axon? , 2008, Nature Neuroscience.

[96]  J. Bullier,et al.  Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements , 1998, Experimental Brain Research.

[97]  R. Buck,et al.  Electrostatic and thermodynamic analysis of suspension effect potentiometry , 1986 .

[98]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[99]  Charles M. Lieber,et al.  Electrical recording from hearts with flexible nanowire device arrays. , 2009, Nano letters.

[100]  Y. Rudy,et al.  Basic mechanisms of cardiac impulse propagation and associated arrhythmias. , 2004, Physiological reviews.

[101]  Tal Dvir,et al.  Nanowired three dimensional cardiac patches , 2011, Nature nanotechnology.

[102]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[103]  R. D. Purves,et al.  Microelectrode methods for intracellular recording and ionophoresis , 1981 .

[104]  W. Rutten Selective electrical interfaces with the nervous system. , 2002, Annual review of biomedical engineering.

[105]  U. Frey,et al.  Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. , 2009, Biosensors & bioelectronics.

[106]  D. Szarowski,et al.  Brain responses to micro-machined silicon devices , 2003, Brain Research.

[107]  Wei Zheng,et al.  High throughput assay technologies for ion channel drug discovery. , 2004, Assay and drug development technologies.

[108]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[109]  Karl-Heinz Boven,et al.  Micro-Electrode Arrays in Cardiac Safety Pharmacology , 2004, Drug safety.

[110]  Bozhi Tian,et al.  Nanowire transistor arrays for mapping neural circuits in acute brain slices , 2010, Proceedings of the National Academy of Sciences.

[111]  Avi Caspi,et al.  Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. , 2009, Archives of ophthalmology.

[112]  V. Fast,et al.  Anisotropic conduction in monolayers of neonatal rat heart cells cultured on collagen substrate. , 1994, Circulation research.

[113]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[114]  A. Aertsen,et al.  Two-dimensional monitoring of spiking networks in acute brain slices , 2001, Experimental Brain Research.

[115]  Smadar Cohen,et al.  Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. , 2011, Biomaterials.

[116]  Martin A. Garrett The LIGO Scientific Collaboration , 2010 .

[117]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[118]  Andreas Offenhäusser,et al.  Action potentials of HL-1 cells recorded with silicon nanowire transistors , 2009 .

[119]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[120]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[121]  Charles M Lieber,et al.  Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. , 2012, Nano letters.

[122]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[123]  Andrew G. Glen,et al.  APPL , 2001 .

[124]  N. Melosh,et al.  Fusion of biomimetic stealth probes into lipid bilayer cores , 2010, Proceedings of the National Academy of Sciences.

[125]  K. Lew,et al.  Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires. , 2008, Nano letters.

[126]  Matthew N. O. Sadiku,et al.  Elements of Electromagnetics , 1989 .

[127]  H. Lüscher,et al.  Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays. , 2004, Journal of neurophysiology.

[128]  Dietmar W Hutmacher,et al.  Biomaterials offer cancer research the third dimension. , 2010, Nature materials.

[129]  Charles M. Lieber,et al.  Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires , 2005, Science.

[130]  Steve M. Potter,et al.  An extremely rich repertoire of bursting patterns during the development of cortical cultures , 2006, BMC Neuroscience.

[131]  Bozhi Tian,et al.  Rational growth of branched nanowire heterostructures with synthetically encoded properties and function , 2011, Proceedings of the National Academy of Sciences.

[132]  David H Gracias,et al.  Tetherless thermobiochemically actuated microgrippers , 2009, Proceedings of the National Academy of Sciences.

[133]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[134]  Haim H. Bau,et al.  Cell electrophysiology with carbon nanopipettes. , 2009, ACS nano.

[135]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[136]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[137]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[138]  Charles M Lieber,et al.  Graphene and nanowire transistors for cellular interfaces and electrical recording. , 2010, Nano letters.

[139]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.

[140]  M. Liu,et al.  Implantation of nanomaterials and nanostructures on surface and their applications , 2012 .

[141]  Miguel A. L. Nicolelis Methods for Neural Ensemble Recordings, Second Edition , 2007 .

[142]  Oliver Bendel [E] , 1896, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[143]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[144]  Christof Koch,et al.  Neuroscience: Observatories of the mind , 2012, Nature.

[145]  Miguel A. L. Nicolelis,et al.  Methods for Neural Ensemble Recordings , 1998 .

[146]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[147]  Charles M. Lieber,et al.  Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. , 2008, Nano letters.

[148]  P. Fromherz,et al.  Signal transmission from individual mammalian nerve cell to field-effect transistor. , 2005, Small.

[149]  F. Patolsky,et al.  Shape- and dimension-controlled single-crystalline silicon and SiGe nanotubes: toward nanofluidic FET devices. , 2009, Journal of the American Chemical Society.

[150]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[151]  I. Tasaki,et al.  SOME PROBLEMS INVOLVED IN ELECTRIC MEASUREMENTS OF BIOLOGICAL SYSTEMS , 1968, Annals of the New York Academy of Sciences.

[152]  C. Svendsen,et al.  ENCYCLOPEDIA OF STEM CELL RESEARCH , 2008 .

[153]  A. Lösch Nano , 2012, Ortsregister.