The Evolution of Flexible Behavioral Repertoires in Cephalopod Molluscs

Cephalopods are a large and ancient group of marine animals with complex brains. Forms extant today are equipped with brains, sensors, and effectors that allow them not to just exist beside modern vertebrates as predators and prey; they compete fiercely with marine vertebrates at every scale from small crustaceans to sperm whales. We review the evolution of this group’s brains, learning ability and complex behavior. We outline evidence that although competition with vertebrates has left a deep impression on the brains and behavior of cephalopods, the original reorganization of their complex brains from their molluscan ancestors might have been forged in ancient seas millions of years before the advent of bony fishes.

[1]  V. AGINa,et al.  BEHAVIOURAL PLASTICITY AND NEURAL CORRELATES IN ADULT CUTTLEFISH , 2011 .

[2]  P. Jereb,et al.  Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids , 2010 .

[3]  W. Muntz A Possible Function of the Iris Groove of Nautilus , 2010 .

[4]  N. Landman,et al.  Growth and Longevity of Nautilus , 2010 .

[5]  P. Ward,et al.  Ecology, Distribution, and Population Characteristics of Nautilus , 2010 .

[6]  W. Kier The Functional Morphology of the Tentacle Musculature of Nautilus pompilius , 2010 .

[7]  J. Young THE NUMBER AND SIZES OF NERVE CELLS IN OCTOPUS , 2009 .

[8]  J. Basil,et al.  Memory of visual and topographical features suggests spatial learning in nautilus (Nautilus pompilius L.). , 2009, Journal of comparative psychology.

[9]  B. Hochner Octopuses , 2008, Current Biology.

[10]  J. Basil,et al.  A role for nautilus in studies of the evolution of brain and behavior , 2008, Communicative & integrative biology.

[11]  D. Glanzman Octopus Conditioning: A Multi-Armed Approach to the LTP–Learning Question , 2008, Current Biology.

[12]  J. Basil,et al.  A biphasic memory curve in the chambered nautilus, Nautilus pompilius L. (Cephalopoda: Nautiloidea) , 2008, Journal of Experimental Biology.

[13]  B. Hochner,et al.  The Octopus Vertical Lobe Modulates Short-Term Learning Rate and Uses LTP to Acquire Long-Term Memory , 2008, Current Biology.

[14]  P. E. Gold Protein synthesis and memory , 2008, Neurobiology of Learning and Memory.

[15]  S. Shigeno,et al.  Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: Evidence from Nautilus embryonic development , 2008, Journal of morphology.

[16]  Ludovic Dickel,et al.  Short-distance navigation in cephalopods: a review and synthesis , 2008, Cognitive Processing.

[17]  R. Mapes,et al.  On the origin of bactritoids (Cephalopoda) , 2007 .

[18]  Johanna B. Holm,et al.  Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate , 2007, Animal Cognition.

[19]  L. Dickel,et al.  Developmental study of multiple memory stages in the cuttlefish, Sepia officinalis , 2006, Neurobiology of Learning and Memory.

[20]  D. A. Baxter,et al.  Feeding behavior of Aplysia: a model system for comparing cellular mechanisms of classical and operant conditioning. , 2006, Learning & memory.

[21]  A. Darmaillacq,et al.  Effects of dorsal and ventral vertical lobe electrolytic lesions on spatial learning and locomotor activity in Sepia officinalis. , 2006, Behavioral neuroscience.

[22]  L. Bonnaud,et al.  Morphological character evolution and molecular trees in sepiids (Mollusca: Cephalopoda): is the cuttlebone a robust phylogenetic marker? , 2006 .

[23]  L. Dickel,et al.  Orientation in the cuttlefish Sepia officinalis: response versus place learning , 2006, Animal Cognition.

[24]  B. Hochner,et al.  The Octopus: A Model for a Comparative Analysis of the Evolution of Learning and Memory Mechanisms , 2006, The Biological Bulletin.

[25]  Gonzalo Giribet,et al.  Evidence for a clade composed of molluscs with serially repeated structures: Monoplacophorans are related to chitons , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Darmaillacq,et al.  Early familiarization overrides innate prey preference in newly hatched Sepia officinalis cuttlefish , 2006, Animal Behaviour.

[27]  A. Drummond,et al.  Divergence time estimates for major cephalopod groups: evidence from multiple genes , 2006, Cladistics : the international journal of the Willi Hennig Society.

[28]  K. Blackwell Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis. , 2006, Anatomical record. Part B, New anatomist.

[29]  L. Dickel,et al.  The "prawn-in-the-tube" procedure in the cuttlefish: habituation or passive avoidance learning? , 2006, Learning & memory.

[30]  M. Norman,et al.  Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. , 2005, Molecular phylogenetics and evolution.

[31]  J. Basil,et al.  The function of the rhinophore and the tentacles of Nautilus pompilius L. (Cephalopoda, Nautiloidea) in orientation to odor , 2005 .

[32]  K. Beuerlein,et al.  Y-maze experiments on the chemotactic behaviour of the tetrabranchiate cephalopod Nautilus pompilius (Mollusca) , 2005 .

[33]  P. Jereb,et al.  Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae) , 2005 .

[34]  R. Muntz THE SPECTRAL SENSITIVITY OF NAUTILUS POMPILIUS , 2005 .

[35]  A. Darmaillacq,et al.  Rapid taste aversion learning in adult cuttlefish, Sepia officinalis , 2004, Animal Behaviour.

[36]  A. Darmaillacq,et al.  Effect of early feeding experience on subsequent prey preference by cuttlefish, Sepia officinalis. , 2004, Developmental psychobiology.

[37]  A. Lindgren,et al.  A combined approach to the phylogeny of Cephalopoda (Mollusca) , 2004, Cladistics : the international journal of the Willi Hennig Society.

[38]  D. A. Baxter,et al.  Extending in vitro conditioning in Aplysia to analyze operant and classical processes in the same preparation. , 2004, Learning & memory.

[39]  Terry Crow,et al.  Pavlovian conditioning of Hermissenda: current cellular, molecular, and circuit perspectives. , 2004, Learning & memory.

[40]  C. ozouF-cosTaz,et al.  A molecular and karyological approach to the taxonomy of Nautilus. , 2004, Comptes rendus biologies.

[41]  Jennifer A. Mather,et al.  Navigation by spatial memory and use of visual landmarks in octopuses , 1991, Journal of Comparative Physiology A.

[42]  R. Chase,et al.  Chemotactic behaviour inOctopus , 1986, Journal of Comparative Physiology A.

[43]  J. Messenger,et al.  A note on the ultrastructure of the Octopus olfactory organ , 1974, Cell and Tissue Research.

[44]  S. Adamo,et al.  Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning , 2004, Animal Cognition.

[45]  V. C. Barber,et al.  The fine structure of the sense organs of the cephalopod mollusc Nautilus , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[46]  H. Maldonado The positive and negative learning process in Octopus vulgaris Lamarck. Influence of the vertical and median superior frontal lobes , 2004, Zeitschrift für vergleichende Physiologie.

[47]  John Zachary Young,et al.  The Brains and Lives of Cephalopods , 2003 .

[48]  B. Hochner,et al.  A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. , 2003, Journal of neurophysiology.

[49]  A. Kuzirian,et al.  Memory reconsolidation in Hermissenda. , 2003, The Biological bulletin.

[50]  G. Steiner,et al.  Molecular phylogeny of Scaphopoda (Mollusca) inferred from 18S rDNA sequences: support for a Scaphopoda–Cephalopoda clade , 2003 .

[51]  M. E. Pedreira,et al.  Protein Synthesis Subserves Reconsolidation or Extinction Depending on Reminder Duration , 2003, Neuron.

[52]  R. Hanlon,et al.  Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). , 2003, Journal of comparative psychology.

[53]  E. Maubert,et al.  Time-dependent effects of cycloheximide on long-term memory in the cuttlefish , 2003, Pharmacology Biochemistry and Behavior.

[54]  R. Chase,et al.  Behavior and Its Neural Control in Gastropod Molluscs , 2002 .

[55]  P. Ruth,et al.  The sensory epithelium of the tentacles and the rhinophore of Nautilus pompilius L. (cephalopoda, nautiloidea) , 2002, Journal of morphology.

[56]  J. Basil,et al.  Female Nautilus are attracted to male conspecific odor , 2002 .

[57]  B. Burrell,et al.  Learning in simple systems , 2001, Current Opinion in Neurobiology.

[58]  E. Kandel The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses , 2001, Science.

[59]  L. Dickel,et al.  Increase of learning abilities and maturation of the vertical lobe complex during postembryonic development in the cuttlefish, Sepia. , 2001, Developmental psychobiology.

[60]  J. Graves,et al.  Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). , 2000, Molecular biology and evolution.

[61]  K. Lukowiak,et al.  Operant conditioning in Lymnaea: evidence for intermediate- and long-term memory. , 2000, Learning & memory.

[62]  K. Staras,et al.  A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea. , 2000, Learning & memory.

[63]  J Atema,et al.  Three-dimensional odor tracking by Nautilus pompilius. , 2000, The Journal of experimental biology.

[64]  G. Haszprunar Is the Aplacophora Monophyletic? a Cladistic Point of View , 2000 .

[65]  R. Hanlon,et al.  Experimental evidence for spatial learning on octopuses (octopus bimaculoides). , 2000, Journal of comparative psychology.

[66]  O. Stork,et al.  Memory formation and the regulation of gene expression , 1999, Cellular and Molecular Life Sciences CMLS.

[67]  L. Dickel,et al.  Evidence for a specific short-term memory in the cuttlefish, Sepia , 1998, Behavioural Processes.

[68]  E. Kandel,et al.  Cognitive Neuroscience and the Study of Memory , 1998, Neuron.

[69]  Terry Crow,et al.  Invertebrate Learning: Current Perspectives , 1998 .

[70]  L. Matzel,et al.  Ubiquitous Molecular Substrates for Associative Learning and Activity-Dependent Neuronal Facilitation , 1998, Reviews in the neurosciences.

[71]  K. Elekes Cephalopod Behaviour , 1997, Acta Biologica Hungarica.

[72]  Peter D. Ward,et al.  Allonautilus: a new genus of living nautiloid cephalopod and its bearing on phylogeny of the Nautilida , 1997, Journal of Paleontology.

[73]  R. Colwill,et al.  Pavlovian appetitive discriminative conditioning inAplysia californica , 1997 .

[74]  L. Dickel,et al.  Postembryonic Maturation of the Vertical Lobe Complex and Early Development of Predatory Behavior in the Cuttlefish (Sepia officinalis) , 1997, Neurobiology of Learning and Memory.

[75]  R. Hanlon,et al.  Foraging and associated behavior by Octopus cyanea Gray, 1849 on a coral atoll, French Polynesia , 1997 .

[76]  W. Kier,et al.  A kinematic analysis of tentacle extension in the squid Loligo pealei , 1997, The Journal of experimental biology.

[77]  S. Adamo,et al.  Do cuttlefish (Cephalopoda) signal their intentions to conspecifics during agonistic encounters? , 1996, Animal Behaviour.

[78]  J. Boal A REVIEW OF SIMULTANEOUS VISUAL DISCRIMINATION AS A METHOD OF TRAINING OCTOPUSES , 1996, Biological reviews of the Cambridge Philosophical Society.

[79]  R. Young,et al.  Analysis of Morphology To Determine Primary Sister taxon Relationships Within Coleoid Cephalopods , 1996 .

[80]  K. Page Mesozoic Ammonoids in Space and Time , 1996 .

[81]  John Taylor,et al.  Origin and evolutionary radiation of the Mollusca , 1996 .

[82]  G. Fiorito,et al.  Lesions of the vertical lobe impair visual discrimination learning by observation in Octopus vulgaris , 1995, Neuroscience Letters.

[83]  T. Bullock,et al.  Cephalopod brains: promising preparations for brain physiology , 1995 .

[84]  B. Budelmann The cephalopod nervous system: What evolution has made of the molluscan design , 1995 .

[85]  B. Budelmann Cephalopod sense organs, nerves and the brain: Adaptations for high performance and life style. , 1995 .

[86]  Jennifer A. Mather,et al.  Cognition in cephalopods , 1995 .

[87]  M. Wells,et al.  Activity levels of Nautilus in the wild , 1993, Nature.

[88]  G. Biederman,et al.  Social learning in invertebrates. , 1993, Science.

[89]  J. Chamberlain Locomotion in ancient seas: Constraint and opportunity in Cephalopod adaptive design , 1993 .

[90]  G. Fiorito,et al.  Observational Learning in Octopus vulgaris , 1992, Science.

[91]  M. Lucero,et al.  Behavioral responses to chemical stimulation of the olfactory organ in the squid Loligo opalescens , 1992 .

[92]  J. Young Computation in the Learning System of Cephalopods. , 1991, The Biological bulletin.

[93]  R. Aronson Ecology, paleobiology and evolutionary constraint in the Octopus , 1991 .

[94]  J. Boal,et al.  Complex Learning in Octopus bimaculoides , 1991 .

[95]  J. Chamberlain Jet propulsion of nautilus : a surviving example of early paleozoic cephalopod locomotor design , 1990 .

[96]  D. Alkon,et al.  Contraction of neuronal branching volume: an anatomic correlate of Pavlovian conditioning. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[97]  H. Pinsker,et al.  Nonassociative learning in the squid lolliguncula-brevis (mollusca, cephalopoda) , 1989 .

[98]  P. Benjamin,et al.  Appetitive learning in snails shows characteristics of conditioning in vertebrates , 1989, Brain Research.

[99]  J. Young 12 – Evolution of the Cephalopod Brain , 1988 .

[100]  John Zachary Young,et al.  Quantitative differences among the brains of cephalopods , 1987 .

[101]  N. Landman,et al.  Nautilus : the biology and paleobiology of a living fossil , 1987 .

[102]  W. Muntz Short Communications: The Spectral Sensitivity of Nautilus Pompilius , 1986 .

[103]  Peter Boyle,et al.  Neural Control of Cephalopod Behavior , 1986 .

[104]  T. Carew,et al.  Invertebrate learning and memory: from behavior to molecules. , 1986, Annual review of neuroscience.

[105]  J. Young,et al.  Memory and visual discrimination by squids , 1985 .

[106]  T. Crow,et al.  Conditioned modification of phototactic behavior in Hermissenda. II. Differential adaptation of B-photoreceptors , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  B. Carlson,et al.  Telemetric Investigation of Vertical Migration of Nautilus belauensis in Palau , 1984 .

[108]  W. Muntz,et al.  On the Visual System of Nautilus Pompilius , 1984 .

[109]  E. Flores Visual discrimination testing in the squid Todarodes pacificus: experimental evidence for lack of color vision , 1983 .

[110]  E. Kandel,et al.  Molecular biology of learning: modulation of transmitter release. , 1982, Science.

[111]  J. Young The Nervous System of Loligo: V. The Vertical Lobe Complex , 1979 .

[112]  E. Kandel Behavioral Biology Of Aplysia , 1979 .

[113]  T. Crow,et al.  Retention of an associative behavioral change in Hermissenda. , 1978, Science.

[114]  D. Dewsbury,et al.  Octopus: Physiology and behaviour of an advanced invertebrate. , 1978 .

[115]  H. Lorković Cellular Basis of Behavior: An Introduction to Behavioral Neurology , 1977 .

[116]  G. Mpitsos,et al.  Learning: rapid aversive conditioning in the gastropod mollusk Pleurobranchaea. , 1975, Science.

[117]  William J. Davis,et al.  Neuronal Substrates of Behavioral Hierarchies and Associative Learning in Pleurobranchaea , 1974 .

[118]  J. Messenger Learning in the cuttlefish, Sepia , 1973 .

[119]  W. Davis,et al.  Learning: Classical and Avoidance Conditioning in the Mollusk Pleurobranchaea , 1973, Science.

[120]  D. Newth THE ANATOMY OF THE NERVOUS SYSTEM OF OCTOPUS VULGARIS , 1972 .

[121]  A. Packard,et al.  CEPHALOPODS AND FISH: THE LIMITS OF CONVERGENCE , 1972 .

[122]  M. G. King,et al.  Conditioning of a free operant in Octupus cyaneus Gray. , 1972, Journal of the experimental analysis of behavior.

[123]  J. Messenger Two-stage Recovery of a Response in Sepia , 1971, Nature.

[124]  Altman Js,et al.  Control of Accept and Reject Reflexes in the Octopus , 1971 .

[125]  J. Altman Control of Accept and Reject Reflexes in the Octopus , 1971, Nature.

[126]  M. Wells,et al.  Single-session learning by octopuses. , 1970, The Journal of experimental biology.

[127]  G. D. Sanders Long-term memory of a tactile discrimination in Octopus vulgaris and the effect of vertical lobe removal. , 1970, Brain research.

[128]  M. Bitterman,et al.  The octopus in the laboratory. Handling, maintenance, training , 1970 .

[129]  M. Wells Short-term learning and interocular transfer in detour experiments with octopuses. , 1967, The Journal of experimental biology.

[130]  F. Walshe,et al.  A model of the brain , 1967 .

[131]  C. Rowell Activity of interneurones in the arm of Octopus in response to tactile stimulation. , 1966, The Journal of experimental biology.

[132]  J. Young The centres for touch discrimination in octopus , 1965, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[133]  J. Young The central nervous system of Nautilus , 1965, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[134]  M. Wells THE VERTICAL LOBE AND TOUCH LEARNING IN THE OCTOPUS. , 1965, The Journal of experimental biology.

[135]  M. Wells DETOUR EXPERIMENTS WITH OCTOPUSES , 1964 .

[136]  P. Graziadei Receptors in the Sucker of the Cuttlefish , 1964, Nature.

[137]  M. J. Wells,et al.  Tactile Discrimination of Shape by Octopus , 1964 .

[138]  Sutherland Ns,et al.  The shape-discrimination of stationary shapes by octopuses. , 1963 .

[139]  M. Wells TASTE BY TOUCH: SOME EXPERIMENTS WITH OCTOPUS , 1963 .

[140]  N. Sutherland,et al.  The shape-discrimination of stationary shapes by octopuses. , 1963, The American journal of psychology.

[141]  A. M. Bidder Use of the Tentacles, Swimming and Buoyancy Control in the Pearly Nautilus , 1962, Nature.

[142]  M. Wells Centres for Tactile and Visual Learning in the Brain of Octopus , 1961 .

[143]  B. Boycott The functional organization of the brain of the cuttlefish Sepia officinalis , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[144]  J. Young LEARNING AND DISCRIMINATION IN THE OCTOPUS , 1961, Biological reviews of the Cambridge Philosophical Society.

[145]  J. Young Unit processes in the formation of representations in the memory of Octopus , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[146]  J. Young,et al.  The statocysts of Octopus vulgaris , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[147]  M. Wells >A Touch-Learning Centre in Octopus , 1959 .

[148]  P. Dews Some observations on an operant in the octopus. , 1959, Journal of the experimental analysis of behavior.

[149]  M. Wells,et al.  The Effect of Vertical Lobe Removal on the Performance of Octopuses in Retention Tests , 1958 .

[150]  B. Boycott,et al.  A memory system in Octopus vulgaris Lamarck , 1955, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[151]  B. B. Boycott,et al.  The comparative study of learning. , 1950 .

[152]  J. Young Cephalopoda , 1871, Transactions of the Glasgow Geological Society.