The Definition of the Riemann Definite Integral and some Related Lemmas

For simplicity, we follow the rules: a, b are real numbers, F , G, H are finite sequences of elements of R, i, j, k are natural numbers, X is a non empty set, and x1 is a set. Let I1 be a subset of R. We say that I1 is closed-interval if and only if: (Def. 1) There exist real numbers a, b such that a ≤ b and I1 = [a, b]. Let us mention that there exists a subset of R which is closed-interval. In the sequel A is a closed-interval subset of R. One can prove the following propositions:

[1]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[2]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[3]  Czesław Bylí Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[4]  Czeslaw Bylinski,et al.  Bounding Boxes for Compact Sets in E 2 , 1997 .

[5]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[6]  Krzysztof Hryniewiecki,et al.  Basic Properties of Real Numbers , 2004 .

[7]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[8]  Jaroslaw Kotowicz,et al.  Partial Functions from a Domain to a Domain , 2004 .

[9]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[10]  Zinaida Trybulec,et al.  Boolean Properties of Sets , 1990 .

[11]  Jaros law Kotowicz,et al.  Convergent Real Sequences . Upper and Lower Bound of Sets of Real Numbers , 1989 .

[12]  Yatsuka Nakamura,et al.  Introduction to Go-Board — Part I , 2004 .

[13]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[14]  Yatsuka Nakamura,et al.  Reconstructions of Special Sequences , 1994 .

[15]  Jarosław Kotowicz Real Sequences and Basic Operations on Them , 2004 .

[16]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[17]  Czeslaw Bylinski The Sum and Product of Finite Sequences of Real Numbers , 1990 .

[18]  Eugeniusz Kusak Abelian Groups, Fields and Vector Spaces 1 , 1990 .

[19]  Colin Runciman,et al.  What About the Natural Numbers? , 1989, Comput. Lang..

[20]  Yatsuka Nakamura,et al.  Preliminaries to Circuits, II 1 , 1996 .

[21]  Konrad Raczkowski,et al.  Topological Properties of Subsets in Real Numbers , 1990 .

[22]  Yatsuka Nakamura,et al.  Introduction to Go-Board - Part II , 1992 .

[23]  Yatsuka Nakamura,et al.  The Topological Space E 2 T . Arcs , Line Segments and Special Polygonal Arcs , 2004 .

[24]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[25]  Yuji Sakai,et al.  Properties of Partial Functions from a Domain to the Set of Real Numbers , 1992 .

[26]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[27]  Jaroslaw Kotowicz,et al.  Functions and finite sequences of real numbers , 1993 .

[28]  Wojciech A. Trybulec Pigeon Hole Principle , 1990 .

[29]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[30]  Konrad Raczkowski,et al.  Topological Properties of Subsets in Real Numbers 1 , 1990 .