A sporadic low‐velocity layer atop the western U.S. mantle transition zone and short‐wavelength variations in transition zone discontinuities

Teleseismic receiver function analysis of data from six dense arrays in the western U.S. is used to investigate mantle transition zone (MTZ) discontinuities and the prevalence of a low-velocity layer atop the 410 km discontinuity (410-LVL). Negative polarity Ps arrivals indicative of a low-velocity layer with a top 25–60 km above the 410 are identified in 8–11 out of 18 stacks of receiver functions from highly sampled back azimuth corridors. The 410-LVL is interpreted as partial melt resulting from upwelling of hydrated mantle across a water solubility contrast at the 410. The 669 km mean depth of the 660 km discontinuity (660) and the magnitude of 660 topography suggest variable hydration, locally approaching saturation, in addition to >150 K lateral temperature variations beneath five arrays. Mean amplitudes of P410s and P660s increase monotonically with period from 2 to 10 s; however, greater variations are observed in the frequency dependence of P410s compared to P660s implying 410 thickness is more heterogeneous. Variable 410 thickness is attributed to changes in hydration modulating the width of the olivine-to-wadsleyite transition interval. Frequency dependence of P660s amplitudes suggests a broad velocity gradient consistent with multivariate phase changes in the olivine and garnet systems. Sporadic detection of the 410-LVL, the magnitude and length scales of MTZ discontinuity topography, and inferred variations in hydration support the occurrence of vigorous small-scale convection in the western U.S. mantle. Comparison of receiver functions with body wave tomography suggests small-scale convection driven by sinking slab segments and lithospheric instabilities contributes to the intermittent nature of the 410-LVL.

[1]  B. Wood The Effect of H2O on the 410-Kilometer Seismic Discontinuity , 1995, Science.

[2]  P. Mumby,et al.  Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States , 2004 .

[3]  K. Hirose,et al.  Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications , 2004 .

[4]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[5]  E. Ohtani,et al.  Stability of hydrous melt at the base of the Earth's upper mantle , 2006, Nature.

[6]  J. A. Tyburczy,et al.  Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States , 2007, Nature.

[7]  E. Humphreys,et al.  Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States , 2011 .

[8]  Shijie Zhong,et al.  Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature , 2006 .

[9]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[10]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[11]  T. Kikegawa,et al.  The Phase Boundary Between α- and β-Mg2SiO4 Determined by in Situ X-ray Observation , 1994, Science.

[12]  R. Hilst,et al.  High resolution global tomography : a snapshot of convection in the Earth , 1997 .

[13]  A. Hofmann,et al.  Segregation of subducted oceanic crust in the convecting mantle , 1994 .

[14]  M. Kumar,et al.  Seismic signatures of detached lithospheric fragments in the mantle beneath eastern Himalaya and southern Tibet , 2009 .

[15]  Toru Inoue,et al.  Effect of water on melting phase relations and melt composition in the system Mg2SiO4MgSiO3H2O up to 15 GPa , 1994 .

[16]  P. Shearer,et al.  A global study of transition zone thickness using receiver functions , 2006 .

[17]  V. Farra,et al.  Subcratonic low‐velocity layer and flood basalts , 2001 .

[18]  S. Ono,et al.  Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry , 2003 .

[19]  P. Tackley Strong heterogeneity caused by deep mantle layering , 2002 .

[20]  Michael G. Bostock,et al.  Green's functions, source signatures, and the normalization of teleseismic wave fields , 2004 .

[21]  S. Karato,et al.  Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite , 2005, Nature.

[22]  Akio Suzuki,et al.  MELTING RELATIONS OF PERIDOTITE AND THE DENSITY CROSSOVER IN PLANETARY MANTLES , 1995 .

[23]  N. Schmerr,et al.  Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity , 2007, Science.

[24]  R. Aster,et al.  Upper mantle convection beneath the central Rio Grande rift imaged by P and S wave tomography , 2004 .

[25]  R. Carlson,et al.  Three‐dimensional seismic velocity structure of the northwestern United States , 2008 .

[26]  M. Ravi Kumar,et al.  Super‐deep low‐velocity layer beneath the Arabian plate , 2003 .

[27]  H. Iwamori,et al.  Stagnant slab, wet plumes and Cenozoic volcanism in East Asia , 2010 .

[28]  S. Sipkin,et al.  Seismic evidence for silicate melt atop the 410-km mantle discontinuity , 1994, Nature.

[29]  C. J. McGrath,et al.  Effect of exchange rate return on volatility spill-over across trading regions , 2012 .

[30]  Peter M. Shearer,et al.  Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity , 1990, Nature.

[31]  Gary L. Pavlis,et al.  Model Update December 2008: Upper Mantle Heterogeneity beneath North America from P-wave Travel Time Tomography with Global and USArray Transportable Array Data , 2009 .

[32]  Cin-Ty A. Lee,et al.  Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle , 2007 .

[33]  H. Iwamori Degree of melting and source composition of Cenozoic basalts in southwest Japan: Evidence for mantle upwelling by flux melting , 1992 .

[34]  D. Helmberger,et al.  Fine structure of the 410‐km discontinuity , 1998 .

[35]  S. Hansen,et al.  P- and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt in Southeast Wyoming , 2009 .

[36]  J. Revenaugh,et al.  A Water‐Rich Transition Zone Beneath the Eastern United States and Gulf of Mexico from Multiple ScS Reverberations , 2013 .

[37]  S. Karato,et al.  Water distribution across the mantle transition zone and its implications for global material circulation , 2011 .

[38]  E. Matzel,et al.  Upper mantle seismic structure beneath eastern Mexico determined from P and S waveform inversion and its implications , 2006 .

[39]  J. V. Smith,et al.  Reduced sapphirine granulite xenoliths from the Lace Kimberlite, South Africa; implications for the deep structure of the Kaapvaal Craton , 1987 .

[40]  D. Frost,et al.  The effect of water on the 410‐km discontinuity: An experimental study , 2002 .

[41]  D. Bercovici,et al.  Stability of a compressible hydrous melt layer above the transition zone , 2009 .

[42]  H. Keppler,et al.  Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite , 2003 .

[43]  M. Bostock Mantle stratigraphy and evolution of the Slave province , 1998 .

[44]  F. Marone,et al.  Seismic Evidence for Water Deep in Earth's Upper Mantle , 2003, Science.

[45]  P. Shearer,et al.  Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms , 2006 .

[46]  M. Bostock Seismic waves converted from velocity gradient anomalies in the Earth’s upper mantle , 1999 .

[47]  A. Deuss Seismic observations of transition-zone discontinuities beneath hotspot locations , 2007 .

[48]  Guust Nolet,et al.  Tomographic imaging of subducted lithosphere below northwest Pacific island arcs , 1991, Nature.

[49]  Yu Jeffrey Gu,et al.  Global variability of transition zone thickness , 2002 .

[50]  Matthias Hort,et al.  Serpentine and the subduction zone water cycle , 2004 .

[51]  H. Keppler,et al.  Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 , 1996 .

[52]  M. Richards,et al.  The dynamics of Cenozoic and Mesozoic plate motions , 1998 .

[53]  M. Hirschmann,et al.  Melting in the Earth's deep upper mantle caused by carbon dioxide , 2006, Nature.

[54]  Mei Xue,et al.  Slab‐plume interaction beneath the Pacific Northwest , 2010 .

[55]  F. Niu,et al.  A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China , 2009 .

[56]  T. Kondo,et al.  Water transport into the deep mantle and formation of a hydrous transition zone , 2004 .

[57]  Brandon Schmandt,et al.  Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle , 2010 .

[58]  Deep seismic structure of the Kaapvaal craton , 1996 .

[59]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .

[60]  M. Hirschmann,et al.  Storage capacity of H2O in nominally anhydrous minerals in the upper mantle , 2005 .

[61]  K. Dueker,et al.  Ubiquitous low‐velocity layer atop the 410‐km discontinuity in the northern Rocky Mountains , 2007 .

[62]  井上 徹 Effect of water on melting phase relations and melt composition in the system Mg[2]SiO[4]-MgSiO[3]-H[2]O up to 15 GPa , 1994 .

[63]  Allan Cox,et al.  Relative Motions Between Oceanic and Continental Plates in the Pacific Basin , 1986 .

[64]  A. Sano,et al.  Influence of Water on Major Phase Transitions in the Earth's Mantle , 2013 .

[65]  Don L. Anderson,et al.  Chemical stratification of the mantle , 1979 .

[66]  Tianyu Zheng,et al.  A complex 660 km discontinuity beneath northeast China , 2003 .

[67]  P. Molnar,et al.  Receiver functions in the western United States, with implications for upper mantle structure and dynamics , 2003 .

[68]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[69]  M. Bostock,et al.  A low‐velocity zone atop the transition zone in northwestern Canada , 2010 .

[70]  D. Bercovici,et al.  The Transition‐Zone Water Filter Model for Global Material Circulation: Where Do We Stand? , 2013 .

[71]  V. Farra,et al.  Low S velocity atop the 410-km discontinuity and mantle plumes , 2007 .

[72]  D. Weidner,et al.  Chemical‐ and Clapeyron‐induced buoyancy at the 660 km discontinuity , 1998 .

[73]  A. Levander,et al.  High‐resolution transition zone structures of the Gorda Slab beneath the western United States: Implication for deep water subduction , 2010 .

[74]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[75]  M. Hirschmann,et al.  Petrologic Structure of a Hydrous 410 Km Discontinuity , 2013 .

[76]  S. Hansen,et al.  Characterizing the 410 km discontinuity low‐velocity layer beneath the LA RISTRA array in the North American Southwest , 2010 .

[77]  É. Stutzmann,et al.  Observations of S410p and S350p phases at seismograph stations in California , 2010 .

[78]  A. Sano,et al.  Wet subduction versus cold subduction , 2005 .

[79]  Daniel E. McNamara,et al.  Ambient Noise Levels in the Continental United States , 2004 .

[80]  Guust Nolet,et al.  Two-stage subduction history under North America inferred from multiple-frequency tomography , 2008 .

[81]  Michael G. Bostock,et al.  Spectral reconstruction of teleseismic P Green's functions , 2005 .

[82]  G. Helffrich Topography of the transition zone seismic discontinuities , 2000 .

[83]  D. Bercovici,et al.  Slab dehydration in the Earth's mantle transition zone , 2006 .

[84]  B. Hacker H 2 O subduction beyond arcs , 2008 .

[85]  D. Helmberger,et al.  P and S waveform modeling of continental sub-lithospheric detachment at the eastern edge of the Rio Grande Rift , 2007 .

[86]  D. James,et al.  Receiver function imaging of upper mantle complexity beneath the Pacific Northwest, United States , 2010 .

[87]  N. Simmons,et al.  Multiple seismic discontinuities near the base of the transition zone in the Earth's mantle , 2000, Nature.

[88]  K. Hirose Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle , 2002 .

[89]  T. Yoshino,et al.  Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite , 2008, Nature.

[90]  Guust Nolet,et al.  Structure of North American mantle constrained by simultaneous inversion of multiple‐frequency SH, SS, and Love waves , 2011 .

[91]  Bradford H. Hager,et al.  Melt segregation from partially molten source regions: The importance of melt density and source region size , 1981 .

[92]  D. Rubie Solubility of water in the a , b and g phases of ( Mg , Fe ) 2 SiO 4 , 2022 .

[93]  L. Elkins‐Tanton,et al.  Vertical mantle flow associated with a lithospheric drip beneath the Great Basin , 2009 .

[94]  F. Niu,et al.  Complex Structure of Mantle Discontinuities at the Tip of the Subducting Slab beneath Northeast China -A Preliminary Investigation of Broadband Receiver Functions- , 1996 .

[95]  J. Revenaugh,et al.  Deep upper-mantle melting beneath the Tasman and Coral Seas detected with multiple ScS reverberations , 2007 .

[96]  R. Aster,et al.  Mantle structure beneath the western edge of the Colorado Plateau , 2008 .

[97]  D. Fee,et al.  Mantle transition zone topography and structure beneath the Yellowstone hotspot , 2004 .

[98]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[99]  J. Lawrence,et al.  Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots , 2007 .

[100]  G. MacDonald Composition and petrology of the earth's mantle , 1977 .

[101]  Improved Green’s functions for passive-source structural studies , 2006 .

[102]  Ramesh Desikan,et al.  Response of mantle transition zone thickness to plume buoyancy flux , 2010 .

[103]  D. Helmberger,et al.  Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States , 2004, Nature.

[104]  D. Bercovici,et al.  On the dynamics of a hydrous melt layer above the transition zone , 2007 .

[105]  S. Maruyama,et al.  Petrogenetic grid in the system MgO-SiO2-H2O up to 30 GPa, 1600°C: Applications to hydrous peridotite subducting into the Earth's deep interior , 2004 .

[106]  A. Ringwood Composition and petrology of the earth's mantle , 1975 .

[107]  B. Hacker H2O subduction beyond arcs , 2008 .

[108]  Thomas H. Jordan,et al.  Mantle layering from ScS reverberations: 2. The transition zone , 1991 .

[109]  B. Tauzin,et al.  The mantle transition zone as seen by global Pds phases: No clear evidence for a thin transition zone beneath hotspots , 2008 .

[110]  B. Tauzin,et al.  Seismic evidence for a global low-velocity layer within the Earth/'s upper mantle , 2010 .

[111]  C. Faccenna,et al.  Subduction-triggered magmatic pulses: A new class of plumes? , 2010 .

[112]  M. Brudzinski,et al.  Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere , 2010, Nature.

[113]  T. Yoshino,et al.  Olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 , 2004 .