Functional Conjugated Polymers for CO2 Reduction Using Visible Light.

The reduction of CO2 with visible light is a highly sustainable method for producing valuable chemicals. The function-led design of organic conjugated semiconductors with more chemical variety than that of inorganic semiconductors has emerged as a method for achieving carbon photofixation chemistry. Here, we report the molecular engineering of triazine-based conjugated microporous polymers to capture, activate and reduce CO2 to CO with visible light. The optical band gap of the CMPs is engineered by varying the organic electron-withdrawing (benzothiadiazole) and electron-donating units (thiophene) on the skeleton of the triazine rings while creating organic donor-acceptor junctions to promote the charge separation. This engineering also provides control of the texture, surface functionality and redox potentials of CMPs for achieving the light-induced conversion of CO2 to CO ambient conditions.

[1]  Yang Yang,et al.  Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction , 2018 .

[2]  D. Su,et al.  CO2 electoreduction reaction on heteroatom-doped carbon cathode materials , 2017 .

[3]  Yuen Hong Tsang,et al.  Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels , 2017 .

[4]  A. Cooper,et al.  Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach , 2017, Angewandte Chemie.

[5]  S. Dou,et al.  Metal‐Free Carbon Materials for CO2 Electrochemical Reduction , 2017, Advanced materials.

[6]  Marc Robert,et al.  Visible-light-driven methane formation from CO2 with a molecular iron catalyst , 2017, Nature.

[7]  K. Landfester,et al.  Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework , 2017 .

[8]  D. Cao,et al.  Porous organic polymer nanotubes as luminescent probe for highly selective and sensitive detection of Fe3+ , 2017, Science China Chemistry.

[9]  Kazuhiko Maeda,et al.  Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO2 Reduction under Visible Light in Aqueous Solution. , 2017, Angewandte Chemie.

[10]  K. Landfester,et al.  Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. , 2016, Angewandte Chemie.

[11]  V. Batista,et al.  Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. , 2016, Journal of the American Chemical Society.

[12]  B. Han,et al.  Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. , 2016, Angewandte Chemie.

[13]  Sibo Wang,et al.  Imidazolatsysteme zur CO2‐Abscheidung und photochemischen Reduktion , 2016 .

[14]  Sibo Wang,et al.  Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction. , 2016, Angewandte Chemie.

[15]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[16]  Xinchen Wang,et al.  Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid , 2015 .

[17]  Katharina Landfester,et al.  Heterophasen‐Photokatalysatoren aus wasserlöslichen Polyelektrolyten: ein Beispiel für die Selbstinitiierung unter sichtbarem Licht , 2015 .

[18]  Jiayin Yuan,et al.  Heterophase Photocatalysts from Water-Soluble Conjugated Polyelectrolytes: An Example of Self-Initiation under Visible Light. , 2015, Angewandte Chemie.

[19]  D. Jiang,et al.  Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. , 2015, Nature chemistry.

[20]  Jacek K. Stolarczyk,et al.  Light-induced cation exchange for copper sulfide based CO2 reduction. , 2015, Journal of the American Chemical Society.

[21]  B. Lotsch,et al.  Phenyl-triazine oligomers for light-driven hydrogen evolution , 2015 .

[22]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[23]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[24]  K. Landfester,et al.  Highly porous conjugated polymers for selective oxidation of organic sulfides under visible light. , 2014, Chemical communications.

[25]  Yong Zhou,et al.  Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects , 2014, Advanced materials.

[26]  Xiang Zhu,et al.  Efficient CO₂ capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. , 2014, Chemical communications.

[27]  M. Rose Nanoporous Polymers: Bridging the Gap between Molecular and Solid Catalysts? , 2014 .

[28]  B. Lotsch,et al.  A hydrazone-based covalent organic framework for photocatalytic hydrogen production , 2014, 1401.3656.

[29]  L. Schmidt-Mende,et al.  Photokatalytische Reduktion von CO 2 an TiO 2 und anderen Halbleitern , 2013 .

[30]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[31]  M. Antonietti,et al.  Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. , 2013, Angewandte Chemie.

[32]  Y. Izumi,et al.  Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond , 2013 .

[33]  S. Dai,et al.  A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. , 2012, Journal of the American Chemical Society.

[34]  A. Cooper,et al.  Porous, Fluorescent, Covalent Triazine‐Based Frameworks Via Room‐Temperature and Microwave‐Assisted Synthesis , 2012, Advanced materials.

[35]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[36]  Andrea Listorti,et al.  Artificial photosynthesis: Solar to fuel. , 2009, Nature materials.

[37]  Liang‐Nian He,et al.  Carbon dioxide chemistry: Examples and challenges in chemical utilization of carbon dioxide , 2009 .

[38]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[39]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[40]  Arne Thomas,et al.  Ionothermalsynthese von porösen kovalenten Triazin‐ Polymernetzwerken , 2008 .

[41]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[42]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[43]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[44]  Chunshan Song Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing , 2006 .

[45]  H. Frei,et al.  Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. , 2005, Journal of the American Chemical Society.

[46]  Yu-mei Shen,et al.  Recent progresses on the fixation of carbon dioxide , 2003 .