Uncertainties in ab initio nuclear structure calculations with chiral interactions

We present theoretical ground state energies and their uncertainties for p-shell nuclei obtained from chiral effective field theory internucleon interactions as a function of chiral order, fitted to two- and three-body data only. We apply a Similary Renormalization Group transformation to improve the numerical convergence of the many-body calculations, and discuss both the numerical uncertainties arising from basis truncations and those from omitted induced many-body forces, as well as chiral truncation uncertainties. With complete Next-to-Next-to-Leading (N2LO) order two- and three-body interactions, we find significant overbinding for the ground states in the upper p-shell, but using higher-order two-body potentials, in combination with N2LO three-body forces, our predictions agree with experiment throughout the p-shell to within our combined estimated uncertainties. The uncertainties due to chiral order truncation are noticeably larger than the numerical uncertainties, but they are expected to become comparable to the numerical uncertainties at complete N3LO.

[1]  R. Roth,et al.  Machine learning for the prediction of converged energies from ab initio nuclear structure calculations , 2022, Physics Letters B.

[2]  D. Gazda,et al.  Nuclear physics uncertainties in light hypernuclei , 2022, Physical Review C.

[3]  J. Vary,et al.  Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO , 2022, 2206.13303.

[4]  J. Vary,et al.  Natural orbitals for the ab initio no-core configuration interaction approach , 2021, Physical Review C.

[5]  I. Vernon,et al.  Ab initio predictions link the neutron skin of 208Pb to nuclear forces , 2021, Nature Physics.

[6]  K. Launey,et al.  Nuclear Dynamics and Reactions in the Ab Initio Symmetry-Adapted Framework , 2021, 2108.04894.

[7]  J. Melendez,et al.  Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables , 2021, Physical Review C.

[8]  J. Vary,et al.  Light nuclei with semilocal momentum-space regularized chiral interactions up to third order , 2020, Physical Review C.

[9]  J. Haidenbauer,et al.  Jacobi no-core shell model for p-shell hypernuclei , 2020, The European Physical Journal A.

[10]  Dean Lee Recent Progress in Nuclear Lattice Simulations , 2020, Frontiers in Physics.

[11]  H. Witała,et al.  Towards high-order calculations of three-nucleon scattering in chiral effective field theory , 2020, The European Physical Journal A.

[12]  H. Witała,et al.  Towards high-order calculations of three-nucleon scattering in chiral effective field theory , 2019, The European Physical Journal A.

[13]  U. van Kolck,et al.  Nuclear effective field theory: Status and perspectives , 2019, 1906.12122.

[14]  J. Vary,et al.  Ab Initio Structure of p-Shell Nuclei with Chiral Effective Field Theory and Daejeon16 Interactions , 2019, 1908.00155.

[15]  G. Hagen,et al.  Extrapolation of nuclear structure observables with artificial neural networks , 2019, Physical Review C.

[16]  U. Meißner,et al.  Nuclear Lattice Effective Field Theory , 2019, Lecture Notes in Physics.

[17]  M. T. Pratola,et al.  Quantifying correlated truncation errors in effective field theory , 2019, Physical Review C.

[18]  Chao Yang,et al.  Deep Learning: Extrapolation Tool for Ab Initio Nuclear Theory , 2018, Physical Review C.

[19]  R. Roth,et al.  Natural orbitals for ab initio no-core shell model calculations , 2018, Physical Review C.

[20]  J. Vary,et al.  Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces , 2018, Physical Review C.

[21]  J. Vary,et al.  Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces , 2018, Physical Review C.

[22]  T. Dytrych,et al.  Symplectic no-core configuration interaction framework for ab initio nuclear structure. , 2018, 1802.01771.

[23]  S. C. Pieper,et al.  Light-Nuclei Spectra from Chiral Dynamics. , 2017, Physical review letters.

[24]  Chao Yang,et al.  Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver , 2016, Comput. Phys. Commun..

[25]  C. Forss'en,et al.  Large-scale exact diagonalizations reveal low-momentum scales of nuclei , 2017, 1712.09951.

[26]  E. Epelbaum,et al.  Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order , 2017, 1711.08821.

[27]  M. Viviani,et al.  Local chiral potentials and the structure of light nuclei , 2016, 1606.06335.

[28]  John O'Neill,et al.  High Performance Optimizations for Nuclear Physics Code MFDn on KNL , 2016, ISC Workshops.

[29]  J. Vary,et al.  Natural orbital description of the halo nucleus 6He , 2016, 1605.04976.

[30]  M. Sosonkina,et al.  N3LO NN interaction adjusted to light nuclei in ab exitu approach , 2016, 1605.00413.

[31]  S. Bogner,et al.  The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei , 2015, 1512.06956.

[32]  U. Meißner,et al.  Jacobi no-core shell model for p-shell nuclei , 2015, 1510.06070.

[33]  A. Ekstrom,et al.  Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions , 2015, 1506.02466.

[34]  K. A. Wendt,et al.  Infrared length scale and extrapolations for the no-core shell model , 2015, 1503.07144.

[35]  R. Schiavilla,et al.  Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances , 2014, 1412.6446.

[36]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[37]  Chao Yang,et al.  Improving the scalability of a symmetric iterative eigensolver for multi‐core platforms , 2014, Concurr. Comput. Pract. Exp..

[38]  M. Hjorth-Jensen,et al.  Coupled-cluster computations of atomic nuclei , 2013, Reports on progress in physics. Physical Society.

[39]  R. Roth,et al.  Ab initio path to heavy nuclei , 2013, 1312.5685.

[40]  Robert Roth,et al.  Evolved Chiral NN+3N Hamiltonians for Ab Initio Nuclear Structure Calculations , 2013, 1311.3563.

[41]  Pieter Maris,et al.  ab initio nuclear structure calculations of p-shell nuclei with JISP16 , 2013 .

[42]  P. Navrátil,et al.  P-shell nuclei using Similarity Renormalization Group evolved three-nucleon interactions , 2013, 1302.5473.

[43]  R. Furnstahl,et al.  Universal properties of infrared oscillator basis extrapolations , 2013, 1302.3815.

[44]  R. J. Furnstahl,et al.  Corrections to Nuclear Energies and Radii in Finite Oscillator Spaces , 2012, 1207.6100.

[45]  Pieter Maris,et al.  Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis , 2012, 1205.3230.

[46]  P. Navrátil,et al.  Medium-mass nuclei with normal-ordered chiral NN+3N interactions. , 2011, Physical review letters.

[47]  Robert Roth,et al.  Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O. , 2011, Physical review letters.

[48]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[49]  S. K. Bogner,et al.  From low-momentum interactions to nuclear structure , 2009, 0912.3688.

[50]  R. J. Furnstahl,et al.  Evolution of nuclear many-body forces with the similarity renormalization group. , 2009, Physical review letters.

[51]  Robert Roth,et al.  Importance truncation for large-scale configuration interaction approaches , 2009, 0903.4605.

[52]  J. Vary,et al.  Ab initio no-core full configuration calculations of light nuclei , 2008, 1510.02544.

[53]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[54]  H. Hergert,et al.  Unitary Correlation Operator Method and Similarity Renormalization Group: Connections and Differences , 2008, 0802.4239.

[55]  V. Bernard,et al.  Subleading contributions to the chiral three-nucleon force I: long-range terms , 2007, 0712.1967.

[56]  R. J. Perry,et al.  Convergence in the no-core shell model with low-momentum two-nucleon interactions , 2007, 0708.3754.

[57]  P. Piecuch,et al.  Coupled-Cluster Theory for Three-Body Hamiltonians , 2007, 0704.2854.

[58]  Tomás Dytrych,et al.  Evidence for symplectic symmetry in Ab initio no-core shell model results for light nuclei. , 2007, Physical review letters.

[59]  R. Furnstahl,et al.  Are low-energy nuclear observables sensitive to high-energy phase shifts? , 2007, nucl-th/0701013.

[60]  H. Sakai,et al.  Complete set of precise deuteron analyzing powers at intermediate energies: Comparison with modern nuclear force predictions , 2002 .

[61]  Petr Navratil,et al.  The Ab Initio No-core Shell Model , 2001, 0902.3510.

[62]  S. C. Pieper,et al.  Realistic models of pion-exchange three-nucleon interactions , 2001, nucl-th/0102004.

[63]  R. Machleidt The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.

[64]  Yutaka Utsuno,et al.  Monte Carlo shell model for atomic nuclei , 2001 .

[65]  Steven C. Pieper,et al.  Quantum Monte Carlo calculations of nuclei with A 7 , 1997, nucl-th/9705009.

[66]  R. Wiringa,et al.  Accurate nucleon-nucleon potential with charge-independence breaking. , 1995, Physical review. C, Nuclear physics.

[67]  F. Wegner FLOW EQUATIONS FOR HAMILTONIANS , 1998 .

[68]  Stoks,et al.  Construction of high-quality NN potential models. , 1994, Physical review. C, Nuclear physics.

[69]  U. van Kolck,et al.  Few-nucleon forces from chiral Lagrangians. , 1994 .

[70]  van Kolck U Few-nucleon forces from chiral Lagrangians. , 1994, Physical review. C, Nuclear physics.

[71]  Wilson,et al.  Renormalization of Hamiltonians. , 1993, Physical review. D, Particles and fields.

[72]  Steven Weinberg,et al.  Nuclear forces from chiral Lagrangians , 1990 .

[73]  R. Machleidt,et al.  The Bonn Meson Exchange Model for the Nucleon Nucleon Interaction , 1987 .

[74]  B. McKellar,et al.  The two pion exchange three-nucleon potential and nuclear matter , 1979 .

[75]  D. H. Gloeckner,et al.  Spurious center-of-mass motion , 1974 .

[76]  M. Moshinsky,et al.  Transformation brackets for harmonic oscillator functions , 1959 .

[77]  H. Lipkin Center-of-Mass Motion in the Nuclear Shell Model , 1958 .

[78]  I. Talmi Nuclear spectroscopy with harmonic oscillator wave-functions , 1952 .