Monaural and binaural frequency selectivity in hearing-impaired subjects

Abstract Sensorineurally hearing-impaired (HI) subjects often report difficulties in complex acoustical environments. To investigate whether these problems arise from specific deficits in the frequency selectivity in binaural listening conditions, thresholds were measured for a 500-Hz sinusoid in phase (So) or antiphase (Sπ) masked by a diotic notched noise (No). The equivalent rectangular bandwidth (ERB) for filters derived from diotic (NoSo) and dichotic (NoSπ) threshold curves is larger for the HI subjects than for the normal-hearing (NH) subjects. However, the ratio of binaural to monaural ERB is the same. The data indicate that there is no additional retrocochlear impairment reducing the binaural frequency selectivity of HI subjects. A specific binaural impairment was also tested by measuring the perception of binaural pitch (Huggins’ pitch). Two out of eight HI subjects failed to perceive this pitch, although in the masking experiment they obtained a binaural masking-level difference of up to 10 dB. The current data therefore provide no clear evidence for a specific binaural impairment factor in hearing impairment that deteriorates several aspects of binaural processing in a similar way. Sumario Los sujetos con hipoacusia sensorineural (HI) a menudo reportan dificultades cuando se encuentran en ambientes acústicos complejos. Para investigar si estos problemas surgen por deficiencias específicas en la selectividad de frecuencias en condiciones de audición binaural, se midieron los umbrales para sinusoides de 500Hz en fase (So) o en antifase (Sω) enmascarados con un ruido con muesca diótica (No). La banda ancha rectangular equivalente (ERB) para filtros derivaba de curvas umbral dióticas (NoSo) y dicóticas (NoSω) son más amplias para los sujetos con HI que para los sujetos normoyentes (NH). Sin embargo, el ratio de ERB binaural / monoaural es la misma. Los datos indican que no hay un impedimento retrococlear adicional cuando se reduce la selectividad binaural de frecuencias en los sujetos con HI. También se hizo una prueba de impedimento binaural específico por medio de la medición de la percepción binaural de tono (Huggins’ pitch). Dos de cada ocho sujetos no pudieron percibir este tono, aunque en el experimento con enmascaramiento, obtuvieron un nivel binaural de diferencia de enmascaramiento de hasta 10dB. Estos datos no dan una evidencia clara de un impedimento binaural específico en la hipoacusia que deteriore diversos aspectos del procesamiento binaural en una forma similar.

[1]  The role of across-frequency processes in dichotic listening conditions. , 2009, The Journal of the Acoustical Society of America.

[2]  B. Kollmeier,et al.  Frequency selectivity in diotic and dichotic masking conditions for normal‐hearing and hearing‐impaired listeners , 2008 .

[3]  Torsten Dau,et al.  Binaural pitch perception in normal-hearing and hearing-impaired listeners , 2007, Hearing Research.

[4]  R. Beutelmann,et al.  Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. , 2006, The Journal of the Acoustical Society of America.

[5]  V. Hohmann,et al.  Spectral loudness summation as a function of duration for hearing-impaired listeners , 2006, International journal of audiology.

[6]  Kirsten Carola Wagener,et al.  Factors influencing sentence intelligibility in noise , 2004 .

[7]  Masashi Unoki,et al.  Extending the domain of center frequencies for the compressive gammachirp auditory filter. , 2003, The Journal of the Acoustical Society of America.

[8]  Volker Hohmann,et al.  An adaptive procedure for categorical loudness scaling. , 2002, The Journal of the Acoustical Society of America.

[9]  Stuart Rosen,et al.  Auditory filter nonlinearity in mild/moderate hearing impairment. , 2002, The Journal of the Acoustical Society of America.

[10]  T. Irino,et al.  A compressive gammachirp auditory filter for both physiological and psychophysical data. , 2001, The Journal of the Acoustical Society of America.

[11]  S van de Par,et al.  Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters. , 1999, The Journal of the Acoustical Society of America.

[12]  Birger Kollmeier,et al.  On the Four Factors Involved in Sensorineural Hearing Loss , 1999 .

[13]  J. Culling,et al.  Dichotic pitches as illusions of binaural unmasking. I. Huggins' pitch and the "binaural edge pitch". , 1998, The Journal of the Acoustical Society of America.

[14]  S Rosen,et al.  Auditory filter nonlinearity at 2 kHz in normal hearing listeners. , 1998, The Journal of the Acoustical Society of America.

[15]  B Kollmeier,et al.  Directivity of binaural noise reduction in spatial multiple noise-source arrangements for normal and impaired listeners. , 1997, The Journal of the Acoustical Society of America.

[16]  B Kollmeier,et al.  Speech intelligibility prediction in hearing-impaired listeners based on a psychoacoustically motivated perception model. , 1996, The Journal of the Acoustical Society of America.

[17]  R. Patterson,et al.  Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. , 1995, The Journal of the Acoustical Society of America.

[18]  H S Colburn,et al.  Effects of Reference Interaural Time and Intensity Differences on Binaural Performance in Listeners with Normal and Impaired Hearing , 1995, Ear and hearing.

[19]  M R Leek,et al.  Auditory filter shapes of normal-hearing and hearing-impaired listeners in continuous broadband noise. , 1993, The Journal of the Acoustical Society of America.

[20]  R Plomp,et al.  Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. , 1992, The Journal of the Acoustical Society of America.

[21]  B C Moore,et al.  Auditory filter shapes at low center frequencies in young and elderly hearing-impaired subjects. , 1992, The Journal of the Acoustical Society of America.

[22]  Brian R Glasberg,et al.  Derivation of auditory filter shapes from notched-noise data , 1990, Hearing Research.

[23]  L E Humes,et al.  Modeling sensorineural hearing loss. I. Model and retrospective evaluation. , 1988, The Journal of the Acoustical Society of America.

[24]  B C Moore,et al.  Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. , 1986, The Journal of the Acoustical Society of America.

[25]  B C Moore,et al.  Dynamic range and asymmetry of the auditory filter. , 1984, The Journal of the Acoustical Society of America.

[26]  M A Fernandes,et al.  Monaural and binaural auditory frequency resolution measured using bandlimited noise and notched-noise masking. , 1983, The Journal of the Acoustical Society of America.

[27]  R. Patterson,et al.  The deterioration of hearing with age: frequency selectivity, the critical ratio, the audiogram, and speech threshold. , 1982, The Journal of the Acoustical Society of America.

[28]  R. Patterson Auditory filter shapes derived with noise stimuli. , 1976, The Journal of the Acoustical Society of America.

[29]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[30]  D. McFadden,et al.  Masking-level differences determined with and without interaural disparities in masker intensity. , 1968, The Journal of the Acoustical Society of America.

[31]  E. D. Boer,et al.  On the Concept of the Critical Band , 1963 .

[32]  E. M. Cramer,et al.  Creation of Pitch through Binaural Interaction , 1958 .