Bio-inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral interactions.

Polymer composite yarns containing a high loading of double-walled carbon nanotubes (DWNTs) have been developed in which the inherent acrylate-based organic coating on the surface of the DWNT bundles interacts strongly with poly(vinyl alcohol) (PVA) through an extensive hydrogen-bond network. This design takes advantage of a toughening mechanism seen in spider silk and collagen, which contain an abundance of hydrogen bonds that can break and reform, allowing for large deformation while maintaining structural stability. Similar to that observed in natural materials, unfolding of the polymeric matrix at large deformations increases ductility without sacrificing stiffness. As the PVA content in the composite increases, the stiffness and energy to failure of the composite also increases up to an optimal point, beyond which mechanical performance in tension decreases. Molecular dynamics (MD) simulations confirm this trend, showing the dominance of nonproductive hydrogen bonding between PVA molecules at high PVA contents, which lubricates the interface between DWNTs.

[1]  S. Nguyen,et al.  Atomistic Investigation of Load Transfer Between DWNT Bundles “Crosslinked” by PMMA Oligomers , 2013 .

[2]  M. Hudspeth,et al.  Strain rate-dependent tensile properties and dynamic electromechanical response of carbon nanotube fibers , 2012 .

[3]  T. Chou,et al.  Carbon nanotube fibers for advanced composites , 2012 .

[4]  Tsu-Wei Chou,et al.  State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges , 2012, Advanced materials.

[5]  Steven W. Cranford,et al.  Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. , 2012, ACS nano.

[6]  A. Tarakanova,et al.  A Materiomics Approach to Spider Silk: Protein Molecules to Webs , 2012 .

[7]  Maricris L. Mayes,et al.  Experimental-computational study of shear interactions within double-walled carbon nanotube bundles. , 2012, Nano letters.

[8]  J. Elliott,et al.  A model for the strength of yarn-like carbon nanotube fibers. , 2011, ACS nano.

[9]  J. J. Vilatela,et al.  Yarn‐Like Carbon Nanotube Fibers , 2010, Advanced materials.

[10]  Mark A. Locascio,et al.  A multiscale study of high performance double-walled nanotube-polymer fibers. , 2010, ACS nano.

[11]  K. Jiang,et al.  Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. , 2010, ACS nano.

[12]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[13]  Ying‐Ling Liu,et al.  Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites , 2010 .

[14]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[15]  Lin Li,et al.  Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods , 2009 .

[16]  E. Waclawik,et al.  Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability , 2009 .

[17]  Chang Ming Li,et al.  The enhanced mechanical properties of a covalently bound chitosan‐multiwalled carbon nanotube nanocomposite , 2009 .

[18]  Yiping Guo,et al.  Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites , 2009 .

[19]  Yongjin Li,et al.  Toward a Stretchable, Elastic, and Electrically Conductive Nanocomposite: Morphology and Properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/Multiwalled Carbon Nanotube Composites Fabricated by High-Shear Processing , 2009 .

[20]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[21]  I. Choi,et al.  Pristine multiwalled carbon nanotube/polyethylene nanocomposites by immobilized catalysts , 2008 .

[22]  T. K. Chaki,et al.  Change in Fiber Properties Due to the Heat Treatment of Nylon 6 Tire Cords , 2008 .

[23]  T. Peijs,et al.  Effective reinforcement in carbon nanotube–polymer composites , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  John Parthenios,et al.  Chemical oxidation of multiwalled carbon nanotubes , 2008 .

[25]  Xiaowei Pei,et al.  Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives , 2008 .

[26]  V. G. Shevchenko,et al.  Synthesis and Properties of Polypropylene/Multiwall Carbon Nanotube Composites , 2008 .

[27]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[28]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[29]  Thomas S. Gates,et al.  Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns , 2007 .

[30]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[31]  Lifeng Liu,et al.  Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. , 2007, Nano letters.

[32]  J. Coleman,et al.  Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol) , 2007 .

[33]  A. Gergely,et al.  Functionalization of Multi-Walled Carbon Nanotubes , 2007 .

[34]  E. Pop,et al.  Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates , 2006, cond-mat/0609075.

[35]  E. Bekyarova,et al.  Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. , 2006, Journal of the American Chemical Society.

[36]  M. Maugey,et al.  Macroscopic Fibers of Oriented Vanadium Oxide Ribbons and Their Application as Highly Sensitive Alcohol Microsensors , 2005 .

[37]  M. Maugey,et al.  Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. , 2005, Nano letters.

[38]  M. Pasquali,et al.  Macroscopic Fibers of Single-Walled Carbon Nanotubes , 2005 .

[39]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[40]  Ya-Li Li,et al.  Mechanical properties of continuously spun fibers of carbon nanotubes. , 2005, Nano letters.

[41]  Dimos Poulikakos,et al.  Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method , 2005 .

[42]  Satish Kumar,et al.  Gel spinning of PVA/SWNT composite fiber , 2004 .

[43]  N. Kotov,et al.  Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies , 2004 .

[44]  Werner J. Blau,et al.  High Performance Nanotube‐Reinforced Plastics: Understanding the Mechanism of Strength Increase , 2004 .

[45]  G. Hwang,et al.  Efficient Load Transfer to Polymer‐Grafted Multiwalled Carbon Nanotubes in Polymer Composites , 2004 .

[46]  R. Smalley,et al.  Single Wall Carbon Nanotube Fibers Extruded from Super-Acid Suspensions: Preferred Orientation, Electrical and Thermal Transport , 2004 .

[47]  V. Castaño,et al.  Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites through Chemical Functionalization , 2003 .

[48]  Robert H. Hauge,et al.  Poly(vinyl alcohol)/SWNT Composite Film , 2003 .

[49]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles. , 2003 .

[50]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[51]  Joselito M. Razal,et al.  Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives , 2003 .

[52]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[53]  Maurizio Prato,et al.  Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites , 2002, Nature materials.

[54]  R. Smalley,et al.  Synthesis, Structure, and Properties of PBO/SWNT Composites & , 2002 .

[55]  Rodney Andrews,et al.  Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing , 2002 .

[56]  P. Ajayan,et al.  Direct Synthesis of Long Single-Walled Carbon Nanotube Strands , 2002, Science.

[57]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[58]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[59]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[60]  S. Chand,et al.  Review Carbon fibers for composites , 2000 .

[61]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[62]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[63]  L. Pang,et al.  Thermogravimetric analysis of carbon nanotubes and nanoparticles , 1993 .

[64]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[65]  Markus J Buehler,et al.  Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. , 2008, Nano letters.

[66]  Ajit D. Kelkar,et al.  Nanoengineering Of Structural, Functional And Smart Materials , 2005 .

[67]  Richard M. Kellogg,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2022 .