Trophic structure of a tropical soil- and litter-dwelling oribatid mite community and consistency of trophic niches across biomes

[1]  S. Scheu,et al.  Trophic consistency of supraspecific taxa in below-ground invertebrate communities: Comparison across lineages and taxonomic ranks , 2019, Functional Ecology.

[2]  S. Scheu,et al.  Trophic consistency of supraspecific taxa in belowground invertebrate communities , 2018, bioRxiv.

[3]  S. Scheu,et al.  Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition , 2018, Biological reviews of the Cambridge Philosophical Society.

[4]  A. Hilpert,et al.  Biomarker function and nutritional stoichiometry of neutral lipid fatty acids and amino acids in oribatid mites , 2017 .

[5]  M. Minor,et al.  Taxonomic resolution and functional traits in the analysis of tropical oribatid mite assemblages , 2017, Experimental and Applied Acarology.

[6]  S. Scheu,et al.  Complex effects of precipitation and basal resources on the trophic ecology of soil oribatid mites: Implications for stable isotope analysis , 2017 .

[7]  A. Goncharov,et al.  Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots , 2017 .

[8]  O. Khokhlova,et al.  Morphogenetic features of soils in the Cat Tien National Park, southern Vietnam , 2017, Eurasian Soil Science.

[9]  J. Lagerlöf,et al.  Trophic interactions among soil arthropods in contrasting land-use systems in Kenya, studied with stable isotopes ☆ , 2017 .

[10]  N. Kuznetsova,et al.  Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms☆ , 2016 .

[11]  M. Maraun,et al.  Small-scale spatial heterogeneity of stable isotopes signatures (δ15N, δ13C) in Sphagnum sp. transfers to all trophic levels in oribatid mites , 2016 .

[12]  J. Pauli,et al.  Microbes are trophic analogs of animals , 2015, Proceedings of the National Academy of Sciences.

[13]  A. Tiunov,et al.  Stable isotope composition (δ(13)C and δ(15)N values) of slime molds: placing bacterivorous soil protozoans in the food web context. , 2015, Rapid communications in mass spectrometry : RCM.

[14]  A. Tiunov,et al.  Trophic position of microbivorous and predatory soil nematodes in a boreal forest as indicated by stable isotope analysis , 2015 .

[15]  A. Goncharov,et al.  Intra-body variation and ontogenetic changes in the isotopic composition (13C/12C and 15N/14N) of beetles (Coleoptera) , 2015, Entomological Review.

[16]  J. C. Iturrondobeitia,et al.  Trophic structure of oribatid mite communities from six different oak forests (Quercus robur) , 2015 .

[17]  A. Tiunov,et al.  Isotopic niche (δ¹³С and δ¹⁵N values) of soil macrofauna in temperate forests. , 2014, Rapid communications in mass spectrometry : RCM.

[18]  M. Hunter,et al.  Trophic stability of soil oribatid mites in the face of environmental change , 2014 .

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  J. Kurbatova,et al.  Modern climate of the Cát Tiên National Park (Southern Vietnam): Climatological data for ecological studies , 2013, Izvestiya, Atmospheric and Oceanic Physics.

[21]  A. Tiunov,et al.  Large 13C/12C and small 15N/14N isotope fractionation in an experimental detrital foodweb (litter–fungi–collembolans) , 2013, Ecological Research.

[22]  S. Ermilov,et al.  Checklist of oribatid mites (Acari: Oribatida) from two forest plantations of southern Vietnam, including new records and description of a new species of the genus Suctobelbata (Suctobelbidae) , 2013 .

[23]  A. Evans,et al.  Mouthpart morphology and trophic position of microarthropods from soils and mosses are strongly correlated , 2012 .

[24]  S. Scheu,et al.  Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis , 2012 .

[25]  J. Cornelissen,et al.  Reservations about preservations: storage methods affect δ13C signatures differently even in closely related soil fauna , 2012 .

[26]  S. Ermilov,et al.  ORIBATID MITES OF DONG NAI BIOSPHERE RESERVE (= CAT TIEN NATIONAL PARK) OF SOUTHERN VIETNAM, WITH DESCRIPTION OF A NEW SPECIES OF PERGALUMNA (ACARI, ORIBATIDA, GALUMNIDAE) , 2012 .

[27]  S. Ermilov,et al.  The Galumnoid fauna (Acari: Oribatida) of Cat Tien National Park (Southern Vietnam) with description of two new species , 2011 .

[28]  A. C. James,et al.  On the Use of Stable Isotopes in Trophic Ecology , 2011 .

[29]  S. Scheu,et al.  Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments , 2011 .

[30]  A. Tiunov,et al.  Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, diplopoda) in a temperate deciduous forest , 2011, Biology Bulletin.

[31]  S. Scheu,et al.  Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology , 2011 .

[32]  Andrew L Jackson,et al.  Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. , 2011, The Journal of animal ecology.

[33]  M. Colloff,et al.  A novel association between oribatid mites and leafy liverworts (Marchantiophyta: Jungermanniidae), with a description of a new species of Birobates Balogh, 1970 (Acari: Oribatida: Oripodidae). , 2011 .

[34]  S. Ermilov,et al.  THE ORIBATID MITE FAMILIES NANHERMANNIIDAE AND LOHMANNIIDAE OF CAT TIEN NATIONAL PARK (VIETNAM) , 2011 .

[35]  L. Ruess,et al.  The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature , 2010 .

[36]  S. Scheu,et al.  Arthropod colonization of land--linking molecules and fossils in oribatid mites (Acari, Oribatida). , 2010, Molecular phylogenetics and evolution.

[37]  M. Maraun,et al.  Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem , 2010, Experimental and Applied Acarology.

[38]  S. Scheu,et al.  Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C) , 2009 .

[39]  E. Schuur,et al.  Elucidating the nutritional dynamics of fungi using stable isotopes. , 2009, Ecology letters.

[40]  D. Phillips,et al.  A niche for isotopic ecology , 2007 .

[41]  Jacob E. Allgeier,et al.  Niche width collapse in a resilient top predator following ecosystem fragmentation , 2007, Ecology letters.

[42]  A. Tiunov,et al.  Soil microarthropods and macrofauna in monsoon tropical forests of Cat Tien and Bi Dup-Nui Ba National Parks, southern Vietnam , 2007, Biology Bulletin.

[43]  S. Scheu,et al.  Awesome or ordinary? Global diversity patterns of oribatid mites , 2007 .

[44]  S. Scheu,et al.  The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N, 13C) indicates strong niche differentiation , 2007, Experimental and Applied Acarology.

[45]  M. Traugott,et al.  Revealing species‐specific trophic links in soil food webs: molecular identification of scarab predators , 2007, Molecular ecology.

[46]  S. Scheu,et al.  High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida) , 2007, Journal of evolutionary biology.

[47]  A. Suarez,et al.  Measuring the trophic ecology of ants using stable isotopes , 2006, Insectes Sociaux.

[48]  S. Scheu,et al.  Feeding guilds in Collembola based on nitrogen stable isotope ratios , 2005 .

[49]  S. Scheu,et al.  Where are the decomposers? Uncovering the soil food web of a tropical montane rain forest in southern Ecuador using stable isotopes (15N) , 2005, Journal of Tropical Ecology.

[50]  S. Scheu,et al.  Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N) , 2004 .

[51]  C. Scrimgeour,et al.  Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources , 2004 .

[52]  R. A. Norton,et al.  Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida) , 2004 .

[53]  L. Tieszen,et al.  Stable isotope analysis of termite food habits in East African grasslands , 1983, Oecologia.

[54]  J. Anderson Inter- and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats , 2004, Oecologia.

[55]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[56]  R. Hill,et al.  Why are tropical rain forests so species rich? Classifying, reviewing and evaluating theories , 2001 .

[57]  S. Pekár,et al.  Feeding preferences and gut contents of three panphytophagous oribatid mites (Acari: Oribatida) , 2001 .

[58]  L. Blanc,et al.  Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends , 2000 .

[59]  S. Scheu,et al.  The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community , 2000, Oecologia.

[60]  D. Coleman,et al.  Soil microarthropod contributions to decomposition dynamics : Tropical-temperate comparisons of a single substrate , 1999 .

[61]  P. Högberg,et al.  Natural (13)C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  I. Tayasu Use of carbon and nitrogen isotope ratios in termite research , 1998, Ecological Research.

[63]  Miklós Fábián The effects of different methods of preservation on the 15N concentration in Folsomia candida (Collembola) , 1998 .

[64]  D. Bignell,et al.  Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood‐feeding to soil‐feeding , 1997 .

[65]  G. Ågren,et al.  Isotope Discrimination during Decomposition of Organic Matter: A Theoretical Analysis , 1996 .

[66]  E. Sampaio,et al.  A model of litterfall, litter layer losses and mass transfer in a humid tropical forest at Pernambuco, Brazil , 1993, Journal of Tropical Ecology.

[67]  M. Lepage,et al.  Food habits of sympatric termite species (Isoptera, Macrotermitinae) as determined by stable carbon isotope analysis in a Guinean savanna (Lamto, Côte d'Ivoire) , 1993, Journal of Tropical Ecology.

[68]  V. Behan-Pelletier,et al.  Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida) , 1991 .

[69]  D. Ellis Taxonomic sufficiency in pollution assessment , 1985 .

[70]  E. L. Smith,et al.  Early Land Animals in North America: Evidence from Devonian Age Arthropods from Gilboa, New York , 1984, Science.

[71]  N. Ishibashi,et al.  Nematode-Feeding Mites and Their Feeding Behavior , 1976 .

[72]  J. Woodring,et al.  Oribatid mites as predators of soil nematodes. , 1966 .

[73]  R. C. Graves Ecological Observations on the Insects and Other Inhabitants of Woody Shelf Fungi (Basidiomycetes: Polyporaceae) in the Chicago Area , 1960 .

[74]  G. E. Hutchinson,et al.  Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? , 1959, The American Naturalist.